Читать книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов - Страница 17

1.2.1.3 Superparamagnetic Nanoparticles

Оглавление

Among the inorganic nanoparticles, superparamagnetic nanoparticles (Figure 1.1c) are considered the most unique nanoparticles due to their strong magnetic properties. These nanoparticles were for the first time used in the late 1980s for biomedical applications (Stark et al. 1988). Usually, the core of these nanoparticles consists of metal molecules of nickel, cobalt, or iron oxide (Fe3O4 magnetite, which is the most commonly used metal). As mentioned above, superparamagnetic nanoparticles are considered most unique because the surface of these nanoparticles can be easily modified by coating the core with various organic polymers like dextran, starch, alginate, inorganic metals, oxides (silica, alumina), etc. (Núñez et al. 2018).

Superparamagnetic nanoparticles can be promisingly used for the diagnosis of various diseases including cancer (tumors) by conjugating with various bioactive ligands (Anderson et al. 2019). To date, a number of approaches have been developed for the fabrication of superparamagnetic nanoparticles which have the potential ability to distinguish cancerous tissue from healthy tissue. In addition, these nanoparticles can be used for magnetic resonance imaging (MRI) of tumor tissue, cell labeling, and drug delivery in different diseases (Núñez et al. 2018; Anderson et al. 2019).

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment

Подняться наверх