Читать книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов - Страница 53

2.8 Other Applications of Nanoselenium

Оглавление

SeNPs coated with polysaccharides from Ulva lactuca were developed and investigated for their anti‐inflammatory efficacy in a model of acute colitis by Zhu et al. (2017). The treatment with SeNPs reduced body weight loss and inflammatory damage of the colon in mice and reduced infiltration with macrophages. It was shown that anti‐inflammatory effects of SeNPs were associated with a decrease in the level of pro‐inflammatory cytokines, in particular IL‐6 and tumor necrosis factor alpha (TNF‐α), by inhibiting the activation of macrophages through suppressing nuclear translocation of NF‐κB responsible for the transcription of these pro‐inflammatory cytokines (Zhu et al. 2017). Atteia et al. (2018) investigated and described the potential protective mechanism of SeNPs against lead acetate‐induced thyrotoxicity. It was found that SeNPs can prevent acetate‐induced hypothyroidism and oxidative damage in the tissues of the thyroid gland. SeNPs can also be used as effective drug carriers based on nucleic acids, and their use may be promising in gene therapy (Li et al. 2016).

Ren et al. (2019) in a rat model of rheumatoid arthritis induced by Freund's adjuvant showed that SeNPs loaded with p‐Сoumaric acid are an effective therapeutic agent for inflammatory diseases. The data were confirmed by histological examination, the level of antioxidant enzyme activity, and inflammatory cytokines (TNF‐α, IL‐1β, IL‐6, and MCP‐1) (Ren et al. 2019). El‐Ghazaly et al. (2017) showed that nano‐Se has potential anti‐inflammatory activity against radiation‐induced inflammation in rats.

In another study, Nematollahi et al. (2018) in ex vivo experiments showed that SeNPs can play an important role in the treatment of hydatid cyst. Considering the significant biological role of selenium in the implementation of vital functions for the cell and in bone mineralization, Hoeg et al. (2012) studied the possibility of use of selenium in the form of nanoparticles in the polysaccharide arabinogalactan with local application to modify the reparative process for bone and muscle tissue injuries. The effect of elemental selenium/arabinogalactan nanocomposite (local introduction) on reparation of bone and muscular tissue in a trauma area has been studied. In animals, to which elemental selenium/arabinogalactan nanocomposite was introduced, the regeneration of bone tissue was absent in the fracture area. Bone trabeculars were destroyed. Activation of osteoclasts both in the area of new bone formation and in the area of old bone was observed (Figure 2.5). In this group of animals, the muscular tissue in the area adjacent to trauma zone was stained unevenly. Many fibers have lost cross‐striation. Necrosis of separate muscular fibers owing to infiltration with macrophages and lymphocytes was observed (Figure 2.6).


Figure 2.5 Regenerative process during fracture (a) The control group. Bone regenerates in the upper third of the perforated fracture of the tibia. Hematoxylin and eosin. (b) Experimental group. Lack of bone regeneration in perforated fracture. Hematoxylin and eosin. (c) Experimental group. Osteoclast activation in the area of the fracture. Hematoxylin and eosin.


Figure 2.6 The effect of the nanocomposite of elemental selenium and arabinogalactan on the repair of muscle tissue when administered locally for 35 days. (a) Experimental group: Loss of cross‐striations, disorientation of individual muscle fibers in the fracture zone. Hematoxylin and eosin. (b) Experimental group: Death of individual muscle fibers, infiltration of lymphocytes and macrophages in the area of the fracture. Hematoxylin and eosin.

The electron microscope study of the muscular tissue from damaged area in animals after introduction of the selenium nanocomposite has shown that the muscular tissue is considerably changed compared to the control group. Areas of abnormal orientation of muscular fibers were revealed, Z‐lines were considerably curved, I‐bands were expanded, and contractile proteins were degradable. Nuclei of myocyte were of irregular shape with clearing zones. The biotesting data indicate that local application of the nanobiocomposite of elemental selenium in the reparation area at injury of bone and muscular tissue leads to a considerably impaired reparative process of both bone and muscular tissue. Impairments of osteoreparation are expressed in osteoresorption, and slowing of bone regeneration was also observed. In our opinion, significant damage to muscle fibers of a toxic nature is observed: loss of transverse striation of muscle fibers, death of some fibers, and infiltration by lymphocytes and macrophages.

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment

Подняться наверх