Читать книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов - Страница 43
References
Оглавление1 Abbasi, E., Aval, S.F., Akbarzadeh, A. et al. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters 9 (1): 247. https://doi.org/10.1186/1556‐276x‐9‐247.
2 Abdallah, M.H. (2013). Transfersomes as a transdermal drug delivery system for enhancement the antifungal activity of nystatin. International Journal of Pharmacy and Pharmaceutical Sciences 5 (4): 560–567.
3 Abiodun‐Solanke, I.M.F., Ajayi, D.M., and Arigbede, A.O. (2014). Nanotechnology and its application in dentistry. Annals of Medical and Health Science Research 4 (3): S171–S177.
4 Adeyemi, O.S. and Sulaiman, F.A. (2015). Evaluation of metal nanoparticles for drug delivery systems. Journal of Biomedical Research 29 (2): 145–149.
5 Ahmed, M. and Douek, M. (2013). The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Research International 2013 (281230): 1–13.
6 An, X., Zhang, F., Zhu, Y., and Shen, W. (2010). Photo‐induced drug release from thermosensitive AuNPs‐liposome using a AuNPs‐switch. Chemical Communications 46: 7202–7204.
7 Anderson, S.D., Gwenin, V.V., and Gwenin, C.D. (2019). Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Research Letters 14: 188. https://doi.org/10.1186/s11671‐019‐3019‐6.
8 Auría‐Soro, C., Nesma, T., Juanes‐Velasco, P. et al. (2019). Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 9 (10): 1365. https://doi.org/10.3390/nano9101365.
9 Badar, A., Pachera, S., Ansari, A.S., and Lohiya, N.K. (2019). Nano based drug delivery systems: present and future prospects. Nanomedicine and Nanotechnology Journal 2 (1): 121.
10 Bangham, A.D. and Horne, R.W. (1964). Negative staining of phospholipids and their structural modification by surface‐active agents as observed in the electron microscope. Journal of Molecular Biology 8 (5): 660–668.
11 Baptista, P.V. (2014). Nanodiagnostics: leaving the research lab to enter the clinics? Diagnosis (Berl) 1: 305–309.
12 Bartelds, R., Nematollahi, M.H., Pols, T. et al. (2018). Niosomes, an alternative for liposomal delivery. PLoS One 13 (4): e0194179. https://doi.org/10.1371/journal.pone.0194179.
13 Beishon, M. (2013). Exploiting a nano‐sized breach in cancer's defenses. Cancer World: 14–21.
14 Bejarano, J., Navarro‐Marquez, M., Morales‐Zavala, F. et al. (2018). Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 8 (17): 4710–4732.
15 Beyth, N., Houri‐Haddad, Y., Domb, A. et al. (2015). Alternative antimicrobial approach: nano‐antimicrobial materials. Evidence‐based Complementary and Alternative Medicine 2015 (246012): 1–16.
16 Bharti, C., Nagaich, U., Pal, A.K., and Gulati, N. (2015). Mesosporus silica nanoparticles in target drug delivery system: a review. International Journal of Pharmaceutical Investigation 5 (3): 124–134.
17 Blume, G. and Ceve, G. (1990). Liposomes for the sustained drug release in vivo. Biochimica et Biophysica Acta 1029 (1): 91–97.
18 Bonnard, T., Gauberti, M., de Lizarrondo, S.M. et al. (2019). Recent advances in nanomedicine for ischemic and hemorrhagic stroke. Stroke 50: 1318–1324.
19 Chandra, A., Joshi, K., and Aggarwal, G. (2018). Topical nano drug delivery for treatment of psoriasis: progressive and novel delivery. Asian Journal of Pharmaceutics 12 (3): S835–S848.
20 Chansuvarn, W., Tuntulani, T., and Imyim, A. (2015). Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold‐based nanomaterials. TrAC Trends in Analytical Chemistry 65: 83–96.
21 Chen, T.J., Cheng, T.H., Chen, C.Y. et al. (2009). Targeted Herceptin dextraniron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. Journal of Biological Inorganic Chemistry 14 (2): 253–260.
22 Chen, Y., Wang, Y., Liu, L. et al. (2015). A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β‐lactams. Nanoscale 7: 16381–16388.
23 Cho, K., Wang, X.U., Nie, S., and Shin, D.M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research 14 (5): 1310–1316.
24 Choudhary, S., Gupta, L., Rani, S. et al. (2017). Impact of dendrimers on solubility of hydrophobic drug molecules. Frontiers in Pharmacology 8: 261. https://doi.org/10.3389/fphar.2017.00261.
25 Crucho, C.I.C. and Barros, M.T. (2017). Polymeric nanoparticles: a study on the preparation variables and characterization methods. Materials Science and Engineering C 80: 771–784.
26 Dudefoi, W., Villares, A., Peyron, S. et al. (2018). Nanoscience and nanotechnologies for biobased materials, packaging and food applications: new opportunities and concerns. Innovative Food Science & Emerging Technologies 46: 107–121.
27 Dykman, L. and Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews 41: 2256–2282.
28 El‐Hammadi, M.M. and Arias, J.L. (2019). An update on liposomes in drug delivery: a patent review (2014‐2018). Expert Opinion on Therapeutic Patents 29 (11): 891–907.
29 Gao, X., Cui, Y., Levenson, R.M. et al. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology 22 (8): 969–976.
30 Gatoo, M.A., Naseem, S., Arfat, M.Y. et al. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Research International 2014 (498420) https://doi.org/10.1155/2014/498420.
31 Gholami‐Shabani, M., Akbarzadeh, A., Norouzian, D. et al. (2014). Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Applied Biochemistry and Biotechnology 172 (8): 4084–4408.
32 Gholami‐Shabani, M., Shams‐Ghahfarokhi, M., Gholami‐Shabani, Z. et al. (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco‐friendly approach. Process Biochemistry 50 (7): 1076–1085.
33 Gholami‐Shabani, M., Imani, A., Shams‐Ghahfarokhi, M. et al. (2016). Bioinspired synthesis, characterization and antifungal activity of enzyme‐mediated gold nanoparticles using a fungal oxidoreductase. Journal of the Iranian Chemical Society 13 (11): 2059–2068.
34 Gholami‐Shabani, M., Gholami‐Shabani, Z., Shams‐Ghahfarokhi, M. et al. (2017). Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. In: Nanotechnology (eds. R. Prasad, M. Kumar and V. Kumar), 133–175. Singapore: Springer.
35 Gholami‐Shabani, M., Gholami‐Shabani, Z., Shams‐Ghahfarokhi, M., and Razzaghi‐Abyaneh, M. (2018). Application of nanotechnology in mycoremediation: current status and future prospects. In: Fungal Nanobionics: Principles and Applications (eds. R. Prasad, V. Kumar, M. Kumar and S. Wang), 89–116. Singapore: Springer.
36 Godin, B. and Touitou, E. (2003). Ethosomes: new prospects in transdermal delivery. Critical Review in Therapeutic Drug Carrier Systems 20 (1): 63–102.
37 Gonzalez‐Rodriguez, R., Campbell, E., and Naumov, A. (2019). Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One 14 (6): 0217072. https://doi.org/10.1371/journal.pone.0217072.
38 Guo, L., Wu, X., Liu, L. et al. (2018). Gold nanoparticle‐based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 14: 1701782. https://doi.org/10.1002/smll.201701782.
39 Hsu, S.H. and Luo, P.W. (2019). From nanoarchitectonics to tissue architectonics: nanomaterials for tissue engineering. In: Advanced Supramolecular Nanoarchitectonics: Micro and Nano Technologies (eds. K. Ariga and M. Aono), 277–288. UK: Elsevier.
40 Hua, S., De Matos, M.B., Metselaar, J.M., and Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in Pharmacology 9 (790) https://doi.org/10.3389/fphar.2018.00790.
41 Huang, X., Qi, X., Boey, F., and Zhang, H. (2012). Graphene‐based composites. Chemical Society Reviews 41: 666–686.
42 Hyafil, F., Cornily, J.C., Feig, J.E. et al. (2007). Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nature Medicine 13: 636–641.
43 Inbaraj, B.S. and Chen, B.H. (2016). Nanomaterial‐based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. Journal of Food and Drug Analysis 24 (1): 15–28.
44 Jackson, T.C., Patani, B.O., and Ekpa, D.E. (2017). Nanotechnology in diagnosis: a review. Advances in Nanoparticles 6: 93–102.
45 Jafari, S., Derakhshankhah, H., Alaei, L. et al. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy 109: 1100–1111.
46 Jain, K.K. (2003). Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Review of Molecular Diagnostics 3: 153–161.
47 Jeong, H.H., Choi, E., Ellis, E., and Lee, T.C. (2019). Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi‐functionality. Journal of Materials Chemistry B 7: 3480–3496.
48 Kaur, R., Sharma, S.K., and Tripathy, S.K. (2019). Advantages and limitations of environmental nanosensors. In: Advances in Nanosensors for Biological and Environmental Analysis (eds. A. Deep and S. Kumar), 119–132. UK: Elsevier.
49 Kesharwani, P., Gorain, B., Low, S.Y. et al. (2018). Nanotechnology based approaches for anti‐diabetic drugs delivery. Diabetes Research and Clinical Practice 136: 52–77.
50 Kievit, F.M., Stephen, Z.R., Veiseh, O. et al. (2012). Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano 6 (3): 2591–2601.
51 Kim, D., Park, S., Lee, J.H. et al. (2007). Antibiofouling polymer‐coated gold nanoparticles as a contrast agent for in vivo X‐ray computed tomography imaging. Journal of the American Chemical Society 129 (24): 7661–7665.
52 de Kraker, M.E.A., Stewardson, A.J., and Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Medicine 13 (11): e1002184. https://doi.org/10.1371/journal.pmed.1002184.
53 Kulthe, S.S., Choudhari, Y.M., Inamdar, N.N., and Mourya, V. (2012). Polymeric micelles: authoritative aspects for drug delivery. Designed Monomers and Polymers 15 (5): 465–521.
54 Kurbanoglu, S. and Ozkan, S.A. (2018). Electrochemical carbon based nanosensors: a promising tool in pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis 147: 439–457.
55 Leary, J.F. (2010). Nanotechnology: what is it and why is small so big? Canadian Journal of Ophthalmology 45 (5): 449–456.
56 Lewinski, N., Colvin, V., and Drezek, R. (2008). Cytotoxicity of nanoparticles. Small 4: 26–49.
57 Li, W. and Chen, X. (2015). Gold nanoparticles for photoacoustic imaging. Nanomedicine (London, England) 10: 299–320.
58 Li, Z., Barnes, J.C., Bosoy, A. et al. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews 41: 2590–2605.
59 Li, Y., Wang, Z., Sun, L. et al. (2019). Nanoparticle‐based sensors for food contaminants. TrAC Trends in Analytical Chemistry 113: 74–83.
60 Liang, R., Wei, M., Evans, D.G., and Duan, X. (2014). Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chemistry Communication 50: 14071–14081.
61 Liu, H.J. and Xu, P. (2019). Smart mesoporous silica nanoparticles for protein delivery. Nanomaterials (Basel) 9 (4): 511. https://doi.org/10.3390/nano9040511.
62 Lombardo, D., Kiselev, M.A., and Caccamo, M.T. (2019). Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials 2019 (3702518) https://doi.org/10.1155/2019/3702518.
63 Lujan, H., Griffin, W.C., Taube, J.H., and Sayes, C.M. (2019). Synthesis and characterization of nanometer‐sized liposomes for encapsulation and microRNA transfer to breast cancer cells. International Journal of Nanomedicine 14: 5159–5173.
64 Lyberopoulou, A., Efstathopoulos, E.P., and Gazouli, M. (2015). Nanodiagnostic and nanotherapeutic molecular platforms for cancer management. Journal of Cancer Research Updates 4: 153–162.
65 Ma, Q., Wang, Y., Jia, J., and Xiang, Y. (2018). Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chemistry 249: 98–103.
66 Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 4 (6): 435–446.
67 Meng, J., Fan, J., Galiana, G. et al. (2009). LHRH‐functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Materials Science and Engineering C 29 (4): 1467–1479.
68 Mitragotri, S. and Stayton, P. (2019). Organic nanoparticles for drug delivery and imaging. MRS Bulletin 39: 219–223.
69 Mukherjee, B., Dey, N., Maji, R. et al. (2014). Current status and future scope for nanomaterials in drug delivery. In: Application of Nanotechnology in Drug Delivery (ed. A. Sezer), 1–21. UK: Intech Open.
70 Mura, S., Nicolas, J., and Couvreur, P. (2013). Stimuli‐responsive nanocarriers for drug delivery. Nature Materials 12 (11): 991–1003.
71 Muzzalupo, R. and Mazzotta, E. (2019). Do niosomes have a place in the field of drug delivery? Expert Opinion on Drug Delivery 16 (11): 1145–1147.
72 Novoselov, K.S., Geim, A.K., Morozov, S.V. et al. (2004). Electric field effect in atomically thin carbon films. Science 306: 666–669.
73 Núñez, C., Estévez, S.V., and Chantada, M.P. (2018). Inorganic nanoparticles in diagnosis and treatment of breast cancer. Journal of Biological Inorganic Chemistry 23 (3): 331–345.
74 Otles, S. and Yalcin, B. (2012). Review on the application of nanobiosensors in food analysis. Acta Scientiarum Polonorum Technologia Alimentaria 11: 7–18.
75 Pang, B., Zhao, Y., Luehmann, H. et al. (2016). 64Cu‐doped PdCu@Au tripods: a multifunctional nanomaterial for positron emission tomography and image‐guided photothermal cancer treatment. ACS Nano 10 (3): 3121–3131.
76 Patel, S., Nanda, R., and Sahoo, S. (2015). Nanotechnology in healthcare: applications and challenges. Medicinal Chemistry 5: 528–533.
77 Patra, J.K., Das, G., Fraceto, L.F. et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology 16: 71. https://doi.org/10.1186/s12951‐018‐0392‐8.
78 Peiris, P.M., Toy, R., Doolittle, E. et al. (2012). Imaging metastasis using an integrin‐targeting chain‐shaped nanoparticle. ACS Nano 6 (10): 8783–8795.
79 Pérez‐Medina, C., Tang, J., Abdel‐Atti, D. et al. (2015). PET imaging of tumor‐associated macrophages with 89Zr‐labeled high‐density lipoprotein nanoparticles. Journal of Nuclear Medicine 56 (8): 1272–1277.
80 Petrie, J.R., Guzik, T.J., and Touyz, R.M. (2018). Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Canadian Journal of Cardiology 34 (5): 575–584.
81 Pink, D.L., Loruthai, O., Ziolek, R.M. et al. (2019). On the structure of solid lipid nanoparticles. Small 15 (45): 1903156. https://doi.org/10.1002/smll.201903156.
82 Pinto, M.F., Moura, C.C., Nunes, C. et al. (2014). A new topical formulation for psoriasis: development of methotrexate‐loaded nanostructured lipid carriers. International Journal of Pharmaceutics 477: 519–526.
83 Prakitchaiwattana, C. and Detudom, R. (2017). Contaminant sensors: nanosensors, an efficient alarm for food pathogen detection. In: Nanobiosensors (ed. A.M. Grumezescu), 511–572. Academic Press.
84 Rabiee, N., Deljoo, S., and Rabiee, M. (2018). Curcumin‐hybrid nanoparticles in drug delivery system. Asian Journal of Nanoscience and Materials 2 (1): 66–91.
85 Rai, M., Deshmukh, S., Ingle, A., and Gade, A. (2012). Silver nanoparticles: the powerful nano‐weapon against multidrug resistant bacteria. Journal of Applied Microbiology 112 (5): 841–852.
86 Rai, M., Ingle, A.P., Yadav, A. et al. (2016). Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology 42 (5): 696–719.
87 Rajasundari, K. and Hamurugu, K. (2011). Nanotechnology and its application in medical diagnosis. Journal of Basic and Applied Chemistry 1: 26–32.
88 Ramezani, M., Danesh, N.M., Lavaee, P. et al. (2015). A novel colorimetric triple‐helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosensors and Bioelectronics 70: 181–187.
89 Reimhult, E. and Höök, F. (2015). Design of surface modifications for nanoscale sensor applications. Sensors 15 (1): 1635–1675.
90 Ríos‐Corripio, M.A., López‐Díaz, A.S., Ramírez‐Corona, N. et al. (2020). Metallic nanoparticles: development, applications, and future trends for alcoholic and nonalcoholic beverages. In: Nanoengineering in the Beverage Industry (eds. A.M. Grumezescu and A.M. Holban), 263–300. Academic Press.
91 Rizvi, S.A.A. and Saleh, A.M. (2018). Applications of nanoparticles systems in drug delivery technology. Saudi Pharmaceutical Journal 26: 64–70.
92 Senapati, S., Mahanta, A.K., Kumar, S., and Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy 3 (1): 7. https://doi.org/10.1038/s41392‐017‐0004‐3.
93 Sharma, M. (2019). Transdermal and intravenous nano drug delivery systems: present and future. In: Applications of Targeted Nano Drugs and Delivery Systems (eds. S. Mohapatra, S. Ranjan, N. Dasgupta, et al.), 499–550. UK: Elsevier.
94 Sharma, D., Sharma, N., Pathak, K. et al. (2018). Nanotechnology‐based drug delivery systems: challenges and opportunities. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems (ed. A. Grumezescu), 39–79. UK: Elsevier.
95 Shehada, N., Brönstrup, G., Funka, K. et al. (2015). Ultrasensitive silicon nanowire for real‐world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano Letters 15 (2): 1288–1295.
96 Singh, A.P., Biswas, A., Shukla, A., and Maiti, P. (2019). Targeted therapy in chronic diseases using nanomaterial‐based drug delivery vehicles. Signal Transduction and Targeted Therapy 4 (33) https://doi.org/10.1038/s41392‐019‐0068‐3.
97 Srisuk, P., Thongnopnua, P., Raktanonchai, U., and Kanokpanont, S. (2012). Physico‐chemical characteristics of methotrexate‐entrapped oleic acid‐containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. International Journal of Pharmaceutics 427: 426–434.
98 Stark, D.D., Weissleder, R., Elizondo, G. et al. (1988). Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168 (2): 297–301.
99 Sun, T., Gao, J., Han, D. et al. (2019). Fabrication and characterization of solid lipid nano‐formulation of astraxanthin against DMBA‐induced breast cancer via Nrf‐2‐Keap1 and NF‐kB and mTOR/Maf‐1/PTEN pathway. Drug Delivery 26 (1): 975–988.
100 Takahashi, S., Shiraishi, T., Miles, N. et al. (2015). Nanowire analysis of cancer‐testis antigens as biomarkers of aggressive prostate cancer. Urology 85: 704.e1–704.e7.
101 Tang, W., Fan, W., Lau, J. et al. (2019). Emerging blood‐brain‐barrier‐crossing nanotechnology for brain cancer theranostics. Chemical Society Reviews 48: 2967–3014.
102 Tong, R., Christian, D.A., Tang, L. et al. (2009). Nanopolymeric therapeutics. MRS Bulletin 34 (6): 422–431.
103 Vengurlekar, S. and Chaturvedi, S.C. (2019). Elevating toward a new innovation: carbon nanotubes (CNTs). In: Biomedical Applications of Nanoparticles (ed. A.M. Grumezescu), 271–294. UK: Elsevier.
104 Verma, P. and Pathak, K. (2010). Therapeutic and cosmeceutical potential of ethosomes: An overview. Journal of Advanced Pharmaceutical Technology & Research 1 (3): 274–282.
105 Vigneshvar, S., Sudhakumari, C.C., Senthilkumaran, B., and Prakash, H. (2016). Recent advances in biosensor technology for potential applications‐an overview. Frontiers in Bioengineering and Biotechnology 4: 1–9.
106 Virlan, M.J.R., Miricescu, D., Radulescu, R. et al. (2016). Organic nanomaterials and their applications in the treatment of oral diseases. Molecules 21: 207. https://doi.org/10.3390/molecules21020207.
107 Wang, H., Liang, Y., Mirfakhrai, T. et al. (2011). Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Research 4: 729–736.
108 Wang, X., Feng, Y., Dong, P., and Huang, J. (2019). A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Frontiers in Chemistry 7 (671): 1–9. https://doi.org/10.3389/fchem.2019.00671.
109 Warriner, K., Reddy, S.M., Namvar, A., and Neethirajan, S. (2014). Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends in Food Science & Technology 40 (2): 183–199.
110 Werner, M., Auth, T., Beales, P.A. et al. (2018). Nanomaterial interactions with biomembranes: bridging the gap between soft matter models and biological context. Biointerphases 13 (2): 028501.
111 Wright, P.F.A. (2016). Potential risks and benefits of nanotechnology: perceptions of risk in sunscreens. Medical Journal of Australia 204 (10): 369–370.
112 Yang, W., Deng, X., Huang, W. et al. (2019). The physicochemical properties of graphene nanocomposites influence the anticancer effect. Journal of Oncology 2019 (7254534): 1–10. https://doi.org/10.1155/2019/7254534.
113 Yavuz, M.S., Cheng, Y., Chen, J. et al. (2009). Gold nanocages covered by smart polymers for controlled release with near‐infrared light. Nature Materials 8: 935–939.
114 Zhang, Z., Tsai, P.C., Ramezanli, T., and Michniak‐Kohn, B. (2013a). Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5 (3): 205–218.
115 Zhang, Z.J., Wang, J., and Chen, C.Y. (2013b). Near‐infrared light‐mediated nano‐platforms for cancer thermo‐chemotherapy and optical imaging. Advanced Materials 25 (28): 3869–3880.
116 Zhao, C.Y., Cheng, R., Yang, Z., and Tian, Z.M. (2018). Nanotechnology for cancer therapy based on chemotherapy. Molecules 23 (4): 826. https://doi.org/10.3390/molecules23040826.