Читать книгу DNA- and RNA-Based Computing Systems - Группа авторов - Страница 24
2.2.6 Chao's Model
ОглавлениеChao et al. [13] developed a single‐molecule “DNA navigator” to solve a maze (tree graph) of 10 vertices with three junctions. In this, the desired path is explored out of all possible paths of the maze present on an origami that is used as a substrate. On this origami, some sites are specifically used for the binding of the vertices of the tree graph. This helps in the propagation of the path on the origami.
The DNA used for the process is very specific in size and design. The designing of DNA is described next. Hairpin DNA Y is attached to the origami and has a typical sequence layout of the structure , as shown in Figure 2.7. Another type of DNA used is hairpin DNA Z, which is present freely in the solution. Its structure is like . Additionally, an initiator DNA that has a sequence is used to start the process. This initiator DNA binds to the entry vertex. Similarly, an exit DNA is present, which does not have a loop to form a hairpin.
Figure 2.7 Chao's single‐molecule DNA navigator [13] for solving the maze.
After the binding of the initiator, a hairpin loop of the DNA Y opens to make it free to bind to DNA Z and vice versa as both have complementary sites for free form of each other. This type of hybridization continues until it reaches the exit DNA. This hybridization chain also produces those paths that are not the solution to the maze. The exit DNA corresponding to an end vertex of the maze is biotin labeled. If the path is correct, then this biotin‐labeled DNA is free from the exit vertex; otherwise, biotin remains attached to the DNA corresponding to the exit vertex. All the biotin‐labeled sequences are then removed from the solution by streptavidin magnetic beads. The correct path sequence remained in the solution as it is not attached to the biotin. This solution is then analyzed by AFM for identifying the final path.