Читать книгу DNA- and RNA-Based Computing Systems - Группа авторов - Страница 29

References

Оглавление

1 1 Moore, G.E. (1975) Progress in digital integrated circuits. Electron Devices Meeting, 11–13.

2 2 Adleman, L.M. (1994). Molecular computation of solutions to combinatorial problems. Science266 (5187): 1021–1024.

3 3 Lipton, R.J. (1995). DNA solution for hard computational problems. Science268 (5210): 542–545.

4 4 Smith, L.M., Corn, R.M., Condon, A.E. et al. (1998). A surface‐based approach to DNA computation. J Comput Biol5 (2): 255–267.

5 5 Sakamoto, K., Gouzu, H., Komiya, K. et al. (2000). Molecular computation by DNA hairpin formation. Science288 (5469): 1223–1226.

6 6 Liu, Q., Wang, L., Frutos, A.G. et al. (2000). DNA computing on surfaces. Nature403 (6766): 175–179.

7 7 Braich, R.S., Chelyapov, N., Johnson, C. et al. (2002). Solution of a 20‐variable 3‐SAT problem on a DNA computer. Science296 (5567): 499–502.

8 8 Kahan, M., Gil, B., Adar, R., and Shapiro, E. (2008). Towards molecular computers that operate in a biological environment. Physica D237 (9): 1165–1172.

9 9 Bell, S.A., McLean, M.E., Oh, S.K. et al. (2003). Synthesis and characterization of covalently linked single‐stranded DNA oligonucleotide‐dendron conjugates. Bioconjug Chem14 (2): 488–493.

10 10 Shagin, D.A., Shagina, I.A., Zaretsky, A.R. et al. (2017). A high‐throughput assay for quantitative measurement of PCR errors. Sci Rep7 (1): 1–11.

11 11 Ouyang, Q., Kaplan, P.D., Liu, S., and Libchaber, A. (1997). DNA solution of the maximal clique problem. Science278 (5337): 446–449.

12 12 Faulhammer, D., Cukras, A.R., Lipton, R.J., and Landweber, L.F. (2000). Molecular computation: RNA solutions to chess problems. Proc Natl Acad Sci97 (4): 1385–1389.

13 13 Chao, J., Wang, J., Wang, F. et al. (2019). Solving mazes with single‐molecule DNA navigators. Nat Mater18 (3): 273–279.

14 14 Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440 (7082): 297–302.

15 15 Krishnan, Y. and Simmel, F.C. (2011). Nucleic acid based molecular devices. Angew Chem Int Ed50 (14): 3124–3156.

16 16 Yurke, B., Turber, A.J., Mills, A.P. Jr. et al. (2000). A DNA‐fuelled molecular machine made of DNA. Nature406: 605–608.

17 17 He, Y. and Liu, D.R. (2010). Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol5 (11): 778–782.

18 18 Funke, J.J. and Dietz, H. (2016). Placing molecules with Bohr radius resolution using DNA origami. Nat Nanotechnol11 (1): 47–52.

19 19 Hariadi, R.F., Appukutty, A.J., and Sivaramakrishnan, S. (2016). Engineering circular gliding of actin filaments along myosin‐patterned DNA nanotube rings to study long‐term actin‐myosin behaviors. ACS Nano10 (9): 8281–8288.

20 20 Douglas, S.M., Chou, J.J., and Shih, W.M. (2007). DNA‐nanotube‐induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci U S A104 (16): 6644–6648.

21 21 Martin, T.G., Bharat, T.A.M., Joerger, A.C. et al. (2016). Design of a molecular support for cryo‐EM structure determination. Proc Natl Acad Sci U S A113 (47): E7456–E7463.

22 22 Shrestha, P., Jonchhe, S., Emura, T. et al. (2017). Confined space facilitates G‐quadruplex formation. Nat Nanotechnol12 (6): 582–588.

23 23 Kilchherr, F., Wachauf, C., Pelz, B. et al. (2016). Single‐molecule dissection of stacking forces in DNA. Science353 (6304): aaf5508.

24 24 Venkatesan, B.M. and Bashir, R. (2011). Nanopore sensors for nucleic acid analysis. Nat Nanotechnol6 (10): 615–624.

25 25 Bell, N.A.W., Keyser, U.F., Puchner, E.M. et al. (2014). Nanopores formed by DNA origami: a review. Fed Eur Biochem Soc588: 3564–3570.

26 26 Krishnan, S., Ziegler, D., Arnaut, V. et al. (2016). Molecular transport through large‐diameter DNA nanopores. Nat Commun7: 1–7.

27 27 Ouyang, X., Li, J., Liu, H. et al. (2013). Rolling circle amplification‐based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small9 (18): 3082–3087.

28 28 Ora, A., Järvihaavisto, E., Zhang, H. et al. (2016). Cellular delivery of enzyme‐loaded DNA origami. Chem Commun52 (98): 14161–14164.

29 29 Endo, M. and Sugiyama, H. (2014). Single‐molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high‐speed atomic force microscopy. Acc Chem Res47 (6): 1645–1653.

30 30 Rajendran, A., Endo, M., and Sugiyama, H. (2012). Single‐molecule analysis using DNA origami. Angew Chem Int Ed51 (4): 874–890.

31 31 Wang, D., Fu, Y., Yan, J. et al. (2014). Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. Anal Chem86 (4): 1932–1936.

32 32 Linko, V., Nummelin, S., Aarnos, L. et al. (2016). DNA‐based enzyme reactors and systems. Nanomaterials6 (8): 139.

33 33 Fu, J., Liu, M., Liu, Y., and Yan, H. (2012). Spatially‐interactive biomolecular networks organized by nucleic acid nanostructures. Acc Chem Res45 (8): 1215–1226.

34 34 Church, G.M., Gao, Y., and Kosuri, S. (2012). Next‐generation digital information storage in DNA. Science337 (6102): 1628–1628.

35 35 Goldman, N., Bertone, P., Chen, S. et al. (2013). Toward practical high‐capacity low‐maintenance storage of digital information in synthesised DNA. Nature494 (7435): 77–80.

36 36 Blawat, M., Gaedke, K., Hütter, I. et al. (2016). Forward error correction for DNA data storage. Procedia Comput Sci80: 1011–1022.

37 37 Erlich, Y. and Zielinski, D. (2017). DNA fountain enables a robust and efficient storage architecture. Science355 (6328): 950–954.

38 38 Organick, L., Ang, S.D., Chen, Y.‐J. et al., and others (2018). Random access in large‐scale DNA data storage. Nat Biotechnol36 (3): 242.

39 39 Takahashi, C.N., Nguyen, B.H., Strauss, K., and Ceze, L. (2019). Demonstration of end‐to‐end automation of DNA data storage. Sci Rep9 (1): 1–5.

DNA- and RNA-Based Computing Systems

Подняться наверх