Читать книгу Genome Engineering for Crop Improvement - Группа авторов - Страница 23

References

Оглавление

1 Ainley, W.M., Sastry‐Dent, L., Welter, M.E. et al. (2013). Trait stacking via targeted genome editing. Plant Biotechnology Journal 11: 1126–1134.

2 Alok, A., Sandhya, D., Jogam, P. et al. (2020). The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Frontiers in Plant Science 11: 264.

3 Andersson, M., Turesson, H., Nicolia, A. et al. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR‐Cas9 expression in protoplasts. Plant Cell Reports 36 (1): 117–128.

4 Bae, K.H., Do Kwon, Y., Shin, H.C. et al. (2003). Human zinc fingers as building blocks in the construction of artificial transcription factors. Nature Biotechnology 21 (3): 275–280.

5 Bae, S., Park, J., and Kim, J.S. (2014). Cas‐OFFinder: a fast and versatile algorithm that searches for potential off‐target sites of Cas9 RNA‐guided endonucleases. Bioinformatics 30 (10): 1473–1475.

6 Boch, J., Scholze, H., Schornack, S. et al. (2009). Breaking the code of DNA binding specificity of TAL‐type III effectors. Science 326: 1509–1512.

7 Brazelton, V.A. Jr., Zarecor, S., Wright, D.A. et al. (2015). A quick guide to CRISPR sgRNA design tools. GM Crops and Food 6 (4): 266–276.

8 Briggs, A.W., Rios, X., Chari, R. et al. (2012). Iterative capped assembly: rapid and scalable synthesis of repeat‐module DNA such as TAL effectors from individual monomers. Nucleic Acids Research 40 (15): e117–e117.

9 Butler, N.M., Baltes, N.J., Voytas, D.F., and Douches, D.S. (2016). Geminivirus‐mediated genome editing in potato (Solanum tuberosum L.) using sequence‐specific nucleases. Frontiers in Plant Science 7: 1045.

10 Butt, H., Eid, A., Ali, Z. et al. (2017). Efficient CRISPR/Cas9‐mediated genome editing using a chimeric single‐guide RNA molecule. Frontiers in Plant Science 8: 1441.

11 Cai, C.Q., Doyon, Y., Ainley, W.M. et al. (2009). Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology 69: 699–709.

12  Cermak, T., Doyle, E.L., Christian, M. et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting. Nucleic Acids Research 39 (12): e82–e82.

13 Chandrasekaran, J., Brumin, M., Wolf, D. et al. (2016). Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17 (7): 1140–1153.

14 Charrier, A., Vergne, E., Dousset, N. et al. (2019). Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR‐Cas9 system. Frontiers in Plant Science 10: 40.

15 Chen, H., Choi, J., and Bailey, S. (2014). Cut site selection by the two nuclease domains of the Cas9 RNA‐guided endonuclease. Journal of Biological Chemistry 289 (19): 13284–13294.

16 Chen, K., Wang, Y., Zhang, R. et al. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70: 667–697.

17 Chen, W., Dong, Y., Saqib, H.S.A. et al. (2020). Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. Insect Biochemistry and Molecular Biology 119: 103316.

18 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Research 24: 132–141.

19 Christian, M., Cermak, T., Doyle, E.L. et al. (2010). Targeting DNA double‐strand breaks with TAL effector nucleases. Genetics 186: 757–761.

20 Christian, M., Qi, Y., Zhang, Y., and Voytas, D.F. (2013). Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3: Genes, Genomes, Genetics 3 (10): 1697–1705.

21 Clasen, B.M., Stoddard, T.J., Luo, S. et al. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal 14 (1): 169–176.

22 Cong, L., Ran, F.A., Cox, D. et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.

23 Coordinators, N.R. (2013). Database resources of the national center for biotechnology information. Nucleic Acids Research 41 (Database issue): D8.

24 Cradick, T.J., Qiu, P., Lee, C.M. et al. (2014). COSMID: a web‐based tool for identifying and validating CRISPR/Cas off‐target sites. Molecular Therapy – Nucleic Acids 3: e214.

25 Curtin, S.J., Zhang, F., Sander, J.D. et al. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc‐finger nucleases. Plant Physiology 156 (2): 466–473.

26 Doench, J.G., Hartenian, E., Graham, D.B. et al. (2014). Rational design of highly active sgRNAs for CRISPR‐Cas9–mediated gene inactivation. Nature Biotechnology 32 (12): 1262.

27 Dreier, B., Beerli, R.R., Segal, D.J. et al. (2001). Development of zinc finger domains for recognition of the 5′‐ANN‐3′ family of DNA sequences and their use in the construction of artificial transcription factors. Journal of Biological Chemistry 276 (31): 29466–29478.

28 Du, H., Zeng, X., Zhao, M. et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217: 90–97.

29 El‐Mounadi, K., Morales‐Floriano, M.L., and Garcia‐Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR‐Cas9. Frontiers in Plant Science 11: 56.

30 Endo, A., Masafumi, M., Kaya, H., and Toki, S. (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports 6: 38169.

31 Endo, M., Mikami, M., and Toki, S. (2016). Biallelic gene targeting in rice. Plant Physiology 170 (2): 667–677.

32  Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One 3 (11): e3647.

33 Fan, D., Liu, T., Li, C. et al. (2015). Efficient CRISPR/Cas9‐mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5: 12217.

34 Fan, Y., Xin, S., Dai, X. et al. (2020). Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products 146: 112146.

35 Fauser, F., Schiml, S., and Puchta, H. (2014). Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal 79: 348–359.

36 Feng, Z., Mao, Y., Xu, N. et al. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Casinduced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111: 4632–4637.

37 Fu, Y., Foden, J.A., Khayter, C. et al. (2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nature Biotechnology 31 (9): 822–826.

38 Fu, Y., Sander, J.D., Reyon, D. et al. (2014). Improving CRISPR‐Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32 (3): 279.

39 Gallego‐Bartolomé, J., Gardiner, J., Liu, W. et al. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences 115 (9): E2125–E2134.

40 Gao, J., Wang, G., Ma, S. et al. (2015). CRISPR/Cas9‐mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology 87 (1–2): 99–110.

41 Gao, L., Cox, D.B., Yan, W.X. et al. (2017). Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology 35 (8): 789.

42 Garneau, J.E., Dupuis, M.È., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (7320): 67–71.

43 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences 109 (39): E2579–E2586.

44 Gasparis, S., Przyborowski, M., Kała, M., and Nadolska‐Orczyk, A. (2019). Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA‐guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cell 8 (8): 782.

45 González, M.N., Massa, G.A., Andersson, M. et al. (2020). Reduced enzymatic Browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Frontiers in Plant Science 10: 1649.

46 Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. (2014). Highly specific and efficient CRISPR/Cas9‐catalyzed homology‐directed repair in drosophila. Genetics 196 (4): 961–971.

47 Grissa, I., Vergnaud, G., and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research 35 (suppl_2): W52–W57.

48 Guilinger, J.P., Thompson, D.B., and Liu, D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology 32: 577–582.

49 Han, Y.J. and Kim, J.I. (2019). Application of CRISPR/Cas9‐mediated gene editing for the development of herbicide‐resistant plants. Plant Biotechnology Reports 13: 447–457.

50 Heigwer, F., Kerr, G., Walther, N. et al. (2013). E‐TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Research 41 (20): e190–e190.

51  Heigwer, F., Kerr, G., and Boutros, M. (2014). E‐CRISP: fast CRISPR target site identification. Nature Methods 11 (2): 122.

52 Huang, P., Xiao, A., Zhou, M. et al. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology 29 (8): 699–700.

53 Hummel, A.W., Chauhan, R.D., Cermak, T. et al. (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal 16 (7): 1275–1282.

54 Iqbal, Z., Sattar, M.N., and Shafiq, M. (2016). CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science 7: 475.

55 Jang, G. and Joung, Y.H. (2019). CRISPR/Cas‐mediated genome editing for crop improvement: current applications and future prospects. Plant Biotechnology Reports 13 (1): 1–10.

56 Jansing, J., Schiermeyer, A., Schillberg, S. et al. (2019). Genome editing in agriculture: technical and practical considerations. International Journal of Molecular Sciences 20 (12): 2888.

57 Ji, X., Wang, D., and Gao, C. (2015). CRISPR editing‐mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Science Bulletin 60: 1332.

58 Jia, H., Orbovic, V., Jones, J.B., and Wang, N. (2016). Modification of the PthA4 effector binding elements in type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnology Journal 14 (5): 1291–1301.

59 Jia, H., Zhang, Y., Orbović, V. et al. (2017). Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15 (7): 817–823.

60 Jiang, W., Zhou, H., Bi, H. et al. (2013). Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41 (20): e188–e188.

61 Jiang, W.Z., Henry, I.M., Lynagh, P.G. et al. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal 15 (5): 648–657.

62 Jiménez, A., Hoff, B., and Revuelta, J.L. (2020). Multiplex genome editing in Ashbya gossypii using CRISPR‐Cpf1. New Biotechnology 57: 29–33.

63 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096): 816–821.

64 Kang, B.C., Yun, J.Y., Kim, S.T. et al. (2018). Precision genome engineering through adenine base editing in plants. Nature Plants 4 (7): 427–431.

65 Kaur, K., Tandon, H., Gupta, A.K., and Kumar, M. (2015). CrisprGE: a central hub of CRISPR/Cas‐based genome editing. Database 2015: bav055.

66 Kim, H. and Kim, J.S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15 (5): 321–334.

67 Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences 93 (3): 1156–1160.

68 Kim, H.J., Lee, H.J., Kim, H. et al. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research 19 (7): 1279–1288.

69 Kim, D., Kim, J., Hur, J.K. et al. (2016). Genome‐wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology 34 (8): 863.

70  Kim, H.K., Song, M., Lee, J. et al. (2017). In vivo high‐throughput profiling of CRISPR–Cpf1 activity. Nature Methods 14 (2): 153.

71 Kim, H., Kim, S.T., Ryu, J. et al. (2017). CRISPR/Cpf1‐mediated DNA‐free plant genome editing. Nature Communications 8 (1): 1–7.

72 Klap, C., Yeshayahou, E., Bolger, A.M. et al. (2017). Tomato facultative parthenocarpy results from Sl AGAMOUS‐LIKE 6 loss of function. Plant Biotechnology Journal 15 (5): 634–647.

73 Kleinstiver, B.P., Tsai, S.Q., Prew, M.S. et al. (2016). Genome‐wide specificities of CRISPR‐Cas Cpf1 nucleases in human cells. Nature Biotechnology 34 (8): 869.

74 Lawrenson, T., Shorinola, O., Stacey, N. et al. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA‐guided Cas9 nuclease. Genome Biology 16 (1): 258.

75 Lee, K., Zhang, Y., Kleinstiver, B.P. et al. (2019). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal 17 (2): 362–372.

76 Lei, Y., Lu, L., Liu, H.Y. et al. (2014). CRISPR‐P: a web tool for synthetic single‐guide RNA design of CRISPR‐system in plants. Molecular Plant 7 (9): 1494–1496.

77 Li, T., Huang, S., Jiang, W.Z. et al. (2011). TAL nucleases (TALNs), hybrid proteins composed of TAL effectors and FokI DNAcleavage domain. Nucleic Acids Research 39: 359–372.

78 Li, T., Liu, B., Spalding, M.H. et al. (2012). High‐efficiency TALEN‐based gene editing produces disease‐resistant rice. Nature Biotechnology 30 (5): 390.

79 Li, J.F., Norville, J.E., Aach, J. et al. (2013). Multiplex and homologous recombination‐mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691.

80 Li, Z., Liu, Z.B., Xing, A. et al. (2015). Cas9‐guide RNA directed genome editing in soybean. Plant Physiology 169 (2): 960–970.

81 Li, J., Meng, X., Zong, Y. et al. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants 2 (10): 1–6.

82 Li, M., Li, X., Zhou, Z. et al. (2016). Reassessment of the four yield‐related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science 7: 377.

83 Li, X., Zhou, W., Ren, Y. et al. (2017). High‐efficiency breeding of early‐maturing rice cultivars via CRISPR/Cas9‐mediated genome editing. Journal of Genetics and Genomics= Yi chuan xue bao 44 (3): 175.

84 Li, J., Zhang, H., Si, X. et al. (2017). Generation of thermosensitive male‐sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics= Yi chuan xue bao 44 (9): 465.

85 Li, T., Yang, X., Yu, Y. et al. (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36 (12): 1160–1163.

86 Li, B., Rui, H., Li, Y. et al. (2019). Robust CRISPR/Cpf1 (Cas12a)‐mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnology Journal 17 (10): 1862–1864.

87 Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41 (2): 63–68.

88 Lin, Y., Fine, E.J., Zheng, Z. et al. (2014). SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Research 42 (6): e47–e47.

89 Liu, Y., Han, J., Chen, Z. et al. (2017). Engineering cell signaling using tunable CRISPR–Cpf1‐based transcription factors. Nature Communications 8 (1): 1–8.

90  Lloyd, A., Plaisier, C.L., Carroll, D., and Drews, G.N. (2005). Targeted mutagenesis using zinc‐finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences 102 (6): 2232–2237.

91 Lowder, L.G., Zhang, D., Baltes, N.J. et al. (2015). A CRISPR/ Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology 169: 971–985.

92 Lowder, L.G., Zhou, J., Zhang, Y. et al. (2018). Robust transcriptional activation in plants using multiplexed CRISPR‐Act2.0 and mTALE‐act systems. Molecular Plant 11: 245–256.

93 Ma, M., Ye, A.Y., Zheng, W., and Kong, L. (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Research International 2013: 270805.

94 Maeder, M.L., Thibodeau‐Beganny, S., Osiak, A. et al. (2008). Rapid “open‐source” engineering of customized zinc‐finger nucleases for highly efficient gene modification. Molecular Cell 31 (2): 294–301.

95 Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. (2011). De novo‐engineered transcription activator‐like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double‐strand breaks. Proceedings of the National Academy of Sciences of the United States of America 108: 2623–2628.

96 Mahfouz, M.M., Piatek, A., and Stewart, C.N. Jr. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal 12 (8): 1006–1014.

97 Makarova, K.S., Haft, D.H., Barrangou, R. et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology 9 (6): 467–477.

98 Mali, P., Aach, J., Stranges, P.B. et al. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 31: 833–838.

99 Malnoy, M., Viola, R., Jung, M.H. et al. (2016). DNA‐free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science 7 (1904).

100 Mandell, J.G. and Barbas, C.F. (2006). Zinc finger tools: custom DNA‐binding domains for transcription factors and nucleases. Nucleic Acids Research 34 (suppl_2): W516–W523.

101 Marton, I., Zuker, A., Shklarman, E. et al. (2010). Nontransgenic genome modification in plant cells. Plant Physiology 154 (3): 1079–1087.

102 Miao, J., Guo, D., Zhang, J. et al. (2013). Targeted mutagenesis in rice using CRISPR‐Cas system. Cell Research 23 (10): 1233–1236.

103 Miroshnichenko, D.N., Shulga, O.A., Timerbaev, V.R., and Dolgov, S.V. (2019). Achievements, challenges, and prospects in the production of nontransgenic, genome‐edited plants. Applied Biochemistry and Microbiology 55 (9): 825–845.

104 Montague, T.G., Cruz, J.M., Gagnon, J.A. et al. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42 (W1): W401–W407.

105 Moon, S.B., Lee, J.M., Kang, J.G. et al. (2018). Highly efficient genome editing by CRISPR‐Cpf1 using CRISPR RNA with a uridinylate‐rich 3′‐overhang. Nature Communications 9 (1): 1–11.

106 Moscou, M.J. and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TALeffectors. Science 326: 1501.

107 Naito, Y., Hino, K., Bono, H., and Ui‐Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off‐target sites. Bioinformatics 31 (7): 1120–1123.

108 Nakajima, I., Ban, Y., Azuma, A. et al. (2017). CRISPR/Cas9‐mediated targeted mutagenesis in grape. PLoS One 12 (5): e0177966.

109  Neff, K.L., Argue, D.P., Ma, A.C. et al. (2013). Mojo hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 14 (1): 1.

110 Nekrasov, V., Wang, C., Win, J. et al. (2017). Rapid generation of a transgene‐free powdery mildew resistant tomato by genome deletion. Scientific Reports 7 (1): 1–6.

111 Nishitani, C., Hirai, N., Komori, S. et al. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6 (1): 1–8.

112 O'Brien, A. and Bailey, T.L. (2014). GT‐Scan: identifying unique genomic targets. Bioinformatics 30 (18): 2673–2675.

113 Odipio, J., Alicai, T., Ingelbrecht, I. et al. (2017). Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science 8: 1780.

114 Ortigosa, A., Gimenez‐Ibanez, S., Leonhardt, N., and Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9‐mediated editing of Sl JAZ 2. Plant Biotechnology Journal 17 (3): 665–673.

115 Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site‐directed mutagenesis in Arabidopsis using custom‐designed zinc finger nucleases. Proceedings of the National Academy of Sciences 107 (26): 12034–12039.

116 Pabo, C.O., Peisach, E., and Grant, R.A. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Annual Review of Biochemistry 70: 313–340.

117 Park, J., Bae, S., and Kim, J.S. (2015). Cas‐designer: a web‐based tool for choice of CRISPR‐Cas9 target sites. Bioinformatics 31 (24): 4014–4016.

118 Parry, M.A.J. and Hawkesford, M.J. (2012). An integrated approach to crop genetic improvement F. Journal of Integrative Plant Biology 54 (4): 250–259.

119 Peng, A., Chen, S., Lei, T. et al. (2017). Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnology Journal 15 (12): 1509–1519.

120 Prykhozhij, S.V., Vinothkumar Rajan, D.G., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10 (3): e0119372.

121 Qi, L.S., Larson, M.H., Gilbert, L.A. et al. (2013). Repurposing CRISPR as an RNA‐guided platform for sequence‐specific control of gene expression. Cell 152 (5): 1173–1183.

122 Ramirez, C.L., Foley, J.E., Wright, D.A. et al. (2008). Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5 (5): 374–375.

123 Ran, F.A., Hsu, P.D., Lin, C.Y. et al. (2013). Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.

124 Reyon, D., Kirkpatrick, J.R., Sander, J.D. et al. (2011). ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics 12 (1): 83.

125 Rodríguez‐Leal, D., Lemmon, Z.H., Man, J. et al. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell 171 (2): 470–480.

126 Sander, J.D., Zaback, P., Joung, J.K. et al. (2007). Zinc finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Research 35 (suppl_2): W599–W605.

127 Sander, J.D., Dahlborg, E.J., Goodwin, M.J. et al. (2011a). Selection‐free zinc‐finger‐nuclease engineering by context‐dependent assembly (CoDA). Nature Methods 8: 67–69.

128 Sander, J.D., Cade, C., Khayter, C. et al. (2011b). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology 29: 697–698.

129  Sauer, N.J., Narváez‐Vásquez, J., Mozoruk, J. et al. (2016). Oligonucleotide‐mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology 170 (4): 1917–1928.

130 Sedeek, K.E., Mahas, A., and Mahfouz, M. (2019). Plant genome engineering for targeted improvement of crop traits. Frontiers in Plant Science 10: 114.

131 Shan, Q., Wang, Y., Chen, K. et al. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant 6 (4): 1365–1368.

132 Shan, Q., Wang, Y., Li, J. et al. (2013b). Targeted genome modification of crop plants using the CRISPR‐Cas system. Nature Biotechnology 31: 686–688.

133 Shi, J., Gao, H., Wang, H. et al. (2017). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15 (2): 207–216.

134 Shrestha, A., Khan, A., and Dey, N. (2018). Cis–trans engineering: advances and perspectives on customized transcriptional regulation in plants. Molecular Plant 11 (7): 886–898.

135 Shukla, V.K., Doyon, Y., Miller, J.C. et al. (2009). Precise genome modification in the crop species Zea mays using zinc‐finger nucleases. Nature 459: 437–441.

136 Singh, R., Kuscu, C., Quinlan, A. et al. (2015). Cas9‐chromatin binding information enables more accurate CRISPR off‐target prediction. Nucleic Acids Research 43 (18): e118–e118.

137 Soyk, S., Müller, N.A., Park, S.J. et al. (2016). Variation in the flowering gene SELF PRUNING 5G promotes day‐neutrality and early yield in tomato. Nature Genetics 49: 162–168.

138 Stemmer, M., Thumberger, T., del Sol Keyer, M. et al. (2015). CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10 (4): e0124633.

139 Sternberg, S.H., Redding, S., Jinek, M. et al. (2014). DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9. Nature 507: 62–67.

140 Sun, Y., Zhang, X., Wu, C. et al. (2016). Engineering herbicide‐resistant rice plants through CRISPR/Cas9‐mediated homologous recombination of acetolactate synthase. Molecular Plant 9 (4): 628–631.

141 Sun, Y., Jiao, G., Liu, Z. et al. (2017). Generation of high‐amylose rice through CRISPR/Cas9‐mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science 8: 298.

142 Svitashev, S., Young, J.K., Schwartz, C. et al. (2015). Targeted mutagenesis, precise gene editing, and site‐specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169 (2): 931–945.

143 Tang, W. and Tang, A.Y. (2017). Applications and roles of the CRISPR system in genome editing of plants. Journal of Forestry Research 28 (1): 15–28.

144 Tang, X., Ren, Q., Yang, L. et al. (2019). Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal 17 (7): 1431–1445.

145 Tian, S., Jiang, L., Cui, X. et al. (2018). Engineering herbicide‐resistant watermelon variety through CRISPR/Cas9‐mediated base‐editing. Plant Cell Reports 37 (9): 1353–1356.

146 Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. (2009). High‐frequency modification of plant genes using engineered zinc‐finger nucleases. Nature 459 (7245): 442–445.

147 Tripathi, J.N., Ntui, V.O., Ron, M. et al. (2019). CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology 2 (1): 1–11.

148  Tsai, S.Q., Wyvekens, N., Khayter, C. et al. (2014). Dimeric CRISPR RNA‐guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32: 569–576.

149 Uniyal, A.P., Yadav, S.K., and Kumar, V. (2019). The CRISPR–Cas9, genome editing approach: a promising tool for drafting defense strategy against begomoviruses including cotton leaf curl viruses. Journal of Plant Biochemistry and Biotechnology 28: 121–132.

150 Upadhyay, S.K. and Sharma, S. (2014). SSFinder: high throughput CRISPR‐Cas target sites prediction tool. BioMed Research International 2014: 742482.

151 Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA‐guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics 3 (12): 2233–2238.

152 Voytas, D.F. (2013). Plant genome engineering with sequence‐specific nucleases. Annual Review of Plant Biology 64: 327–350.

153 Wang, Z., Li, J., Huang, H. et al. (2012). An integrated chip for the high‐throughput synthesis of transcription activator‐like effectors. Angewandte Chemie International Edition 51 (34): 8505–8508.

154 Wang, Y., Cheng, X., Shan, Q. et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 947–951.

155 Wang, F., Wang, C., Liu, P. et al. (2016). Enhanced rice blast resistance by CRISPR/Cas9‐targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11 (4): e0154027.

156 Wang, M., Mao, Y., Lu, Y. et al. (2017). Multiplex gene editing in rice using the CRISPR‐Cpf1 system. Molecular Plant 10 (7): 1011–1013.

157 Wendt, T., Holm, P.B., Starker, C.G. et al. (2013). TAL effector nucleases induce mutations at a pre‐selected location in the genome of primary barley transformants. Plant Molecular Biology 83 (3): 279–285.

158 Wilson, F.M., Harrison, K., Armitage, A.D. et al. (2019). CRISPR/Cas9‐mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods 15 (1): 45.

159 Wright, D.A., Townsend, J.A., Winfrey, R.J. Jr. et al. (2005). High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal 44 (4): 693–705.

160 Wu, X., Scott, D.A., Kriz, A.J. et al. (2014). Genome‐ wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology 32: 670–676.

161 Xie, S., Shen, B., Zhang, C. et al. (2014). sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off‐target cleavage sites. PLoS One 9 (6): e100448.

162 Xu, R., Yang, Y., Qin, R. et al. (2016). Rapid improvement of grain weight via highly efficient CRISPR/Cas9‐mediated multiplex genome editing in rice. Journal of Genetics and Genomics= Yi chuan xue bao 43 (8): 529.

163 Xu, R., Qin, R., Li, H. et al. (2017). Generation of targeted mutant rice using a CRISPR‐Cpf1 system. Plant Biotechnology Journal 15 (6): 713–717.

164 Xu, X., Gao, J., Dai, W. et al. (2019). Gene activation by a CRISPR‐assisted trans enhancer. eLife 8: e45973. Published 2019 Apr 11. doi:https://doi.org/10.7554/eLife.45973.

165 Xu, Z.S., Feng, K., and Xiong, A.S. (2019). CRISPR/Cas9‐mediated multiply targeted mutagenesis in orange and purple carrot plants. Molecular Biotechnology 61 (3): 191–199.

166 Yamamuro, C., Zhu, J.K., and Yang, Z. (2016). Epigenetic modifications and plant hormone action. Molecular Plant 9 (1): 57–70.

167  Yan, W.X., Mirzazadeh, R., Garnerone, S. et al. (2017). BLISS is a versatile and quantitative method for genome‐wide profiling of DNA double‐strand breaks. Nature Communications 8 (1): 1–9.

168 Yao, L., Zhang, Y., Liu, C. et al. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nature Plants 4 (8): 530–533.

169 Yin, X., Biswal, A.K., Dionora, J. et al. (2017). CRISPR‐Cas9 and CRISPR‐Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports 36 (5): 745–757.

170 Zaidi, S.S.E.A., Mahfouz, M.M., and Mansoor, S. (2017). CRISPR‐Cpf1: a new tool for plant genome editing. Trends in Plant Science 22 (7): 550–553.

171 Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. (2015). Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 163 (3): 759–771.

172 Zhang, F., Maeder, M.L., Unger‐Wallace, E. et al. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences 107 (26): 12028–12033.

173 Zhang, F., Cong, L., Lodato, S. et al. (2011). Efficient construction of sequence‐specific TAL effectors for modulating mammalian transcription. Nature Biotechnology 29 (2): 149.

174 Zhang, Y., Zhang, F., Li, X. et al. (2013). Transcription activator‐like effector nucleases enable efficient plant genome engineering. Plant Physiology 161: 20–27.

175 Zhang, Y., Bai, Y., Wu, G. et al. (2017). Simultaneous modification of three homoeologs of ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal 91 (4): 714–724.

176 Zhang, Y., Li, D., Zhang, D. et al. (2018). Analysis of the functions of ta GW 2 homoeologs in wheat grain weight and protein content traits. The Plant Journal 94 (5): 857–866.

177 Zhang, K., Nie, L., Cheng, Q. et al. (2019). Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR‐Cas9 system. Biotechnology for Biofuels 12 (1): 1–18.

178 Zhi, J., Liu, X., Li, D. et al. (2020). CRISPR/Cas9‐mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant. Plant Cell Reports 39 (6): 799–809.

179 Zhou, J., Peng, Z., Long, J. et al. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant Journal 82 (4): 632–643.

180 Zhu, L.J., Holmes, B.R., Aronin, N., and Brodsky, M.H. (2014). CRISPRseek: a bioconductor package to identify target‐specific guide RNAs for CRISPR‐Cas9 genome‐editing systems. PLoS One 9 (9): e108424.

Genome Engineering for Crop Improvement

Подняться наверх