Читать книгу Genome Engineering for Crop Improvement - Группа авторов - Страница 40

References

Оглавление

1 Bjarnholt, N., Li, B., D'Alvise, J., and Janfelt, C. (2014). Mass spectrometry imaging of plant metabolites – principles and possibilities. Nat. Prod. Rep. 31: 818–837. https://doi.org/10.1039/c3np70100j.

2 Bonafaccia, G., Marocchini, M., and Kreft, I. (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 80: 9–15. https://doi.org/10.1016/S0308‐8146(02)00228‐5.

3 Boughton, B.A., Thinagaran, D., Sarabia, D. et al. (2016). Mass spectrometry imaging for plant biology: a review. Phytochem. Rev. 15: 445–488. https://doi.org/10.1007/s11101‐015‐9440‐2.

4 Briggs, D. (1983). Analysis of polymer surfaces by SIMS, 3—preliminary results from molecular imaging and microanalysis experiments. Surf. Interface Anal. 5: 113–118. https://doi.org/10.1002/sia.740050307.

5 Cheah, Z.X., Kopittke, P.M., Harper, S.M. et al. (2019). In situ analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron‐based x‐ray fluorescence microscopy. Ann. Bot. 123: 543–556. https://doi.org/10.1093/aob/mcy189.

6 Collings, R., Harvey, L.J., Hooper, L. et al. (2013). The absorption of iron from whole diets: a systematic review. Am. J. Clin. Nutr. 98: 65–81. https://doi.org/10.3945/ajcn.112.050609.

7 Cotte, M., Pouyet, E., Salomé, M. et al. (2017). The ID21 X‐ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. J. Anal. At. Spectrom. 32: 477–493. https://doi.org/10.1039/C6JA00356G.

8 Cvitanich, C., Przybyłowicz, W.J., Urbanski, D.F. et al. (2010). Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biol. 10: 26. https://doi.org/10.1186/1471‐2229‐10‐26.

9 Detterbeck, A., Pongrac, P., Rensch, S. et al. (2016). Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation. New Phytol. 211: 1241–1254. https://doi.org/10.1111/nph.13987.

10 Dickinson, M., Heard, P.J., Barker, J.H.A. et al. (2006). Dynamic SIMS analysis of cryo‐prepared biological and geological specimens. Appl. Surf. Sci. 252: 6793–6796. https://doi.org/10.1016/j.apsusc.2006.02.236.

11 Dong, Y., Li, B., and Aharoni, A. (2016a). More than pictures: when MS imaging meets histology. Trends Plant Sci. 21: 686–698. https://doi.org/10.1016/j.tplants.2016.04.007.

12 Dong, Y., Li, B., Malitsky, S. et al. (2016b). Sample preparation for mass spectrometry imaging of plant tissues: areview. Front. Plant Sci. 7: 60. https://doi.org/10.3389/fpls.2016.00060.

13 Eckardt, N.A. (2011). Plant science in the Service of Human Health and Nutrition. Plant Cell 23: 2476–2476. https://doi.org/10.1105/tpc.111.230715.

14 Gianoncelli, A., Kourousias, G., Merolle, L. et al. (2016). Current status of the TwinMic beamline at Elettra: a soft X‐ray transmission and emission microscopy station. J. Synchrotron Radiat. 23: 1526–1537. https://doi.org/10.1107/S1600577516014405.

15 Gorzolka, K., Kölling, J., Nattkemper, T.W., and Niehaus, K. (2016). Spatio‐temporal metabolite profiling of the barley germination process by MALDI MS imaging. PLoS One 11: e0150208. https://doi.org/10.1371/journal.pone.0150208.

16 Grassl, J., Taylor, N.L., and Millar, H. (2011). Matrix‐assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging. Plant Methods 7: 21. https://doi.org/10.1186/1746‐4811‐7‐21.

17  Guendel, A., Rolletschek, H., Wagner, S. et al. (2018). Micro imaging displays the sucrose landscape within and along its allocation pathways. Plant Physiol. 178: 1448–1460. https://doi.org/10.1104/pp.18.00947.

18 Gundlach‐Graham, A. and Günther, D. (2016). Toward faster and higher resolution LA‐ICPMS imaging: on the co‐evolution of la cell design and ICPMS instrumentationyoung investigators in analytical and bioanalytical science. Anal. Bioanal. Chem. 408: 2687–2695. https://doi.org/10.1007/s00216‐015‐9251‐8.

19 Gupta, S., Rupasinghe, T., Callahan, D.L. et al. (2019). Spatio‐temporal metabolite and elemental profiling of salt stressed barley seeds during initial stages of germination by MALDI‐MSI and μ‐XRF spectrometry. Front. Plant Sci. 10: 1139. https://doi.org/10.3389/fpls.2019.01139.

20 Jenčič, B., Jeromel, L., Ogrinc Potočnik, N. et al. (2016). Molecular imaging of cannabis leaf tissue with MeV‐SIMS method. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 371: 205–210. https://doi.org/10.1016/j.nimb.2015.10.047.

21 Jenčič, B., Jeromel, L., Ogrinc Potočnik, N. et al. (2017). Molecular imaging of alkaloids in khat (Catha edulis) leaves with MeV‐SIMS. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 404: 140–145. https://doi.org/10.1016/j.nimb.2017.01.063.

22 Jeromel, L., Siketić, Z., Ogrinc Potočnik, N. et al. (2014). Development of mass spectrometry by high energy focused heavy ion beam: MeV SIMS with 8 MeV Cl7+ beam. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 332: 22–27. https://doi.org/10.1016/j.nimb.2014.02.022.

23 Kaulich, B., Gianoncelli, A., Beran, A. et al. (2009). Low‐energy X‐ray fluorescence microscopy opening new opportunities for bio‐related research. J. R. Soc. Interface 6 (Suppl 5): S641–S647. https://doi.org/10.1098/rsif.2009.0157.focus.

24 Koren, Š., Arčon, I., Kump, P. et al. (2013). Influence of CdCl2 and CdSO4 supplementation on cd distribution and ligand environment in leaves of the cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant Soil 370: 125–148. https://doi.org/10.1007/s11104‐013‐1617‐0.

25 Lee, Y.J., Perdian, D.C., Song, Z. et al. (2012). Use of mass spectrometry for imaging metabolites in plants. Plant J. 70: 81–95. https://doi.org/10.1111/j.1365‐313X.2012.04899.x.

26 Lim, W.L., Collins, H.M., Byrt, C.S. et al. (2020). Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. J. Exp. Bot. 71: 138–153. https://doi.org/10.1093/jxb/erz407.

27 Limbeck, A., Galler, P., Bonta, M. et al. (2015). Recent advances in quantitative LA‐ICP‐MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal. Bioanal. Chem. 407: 6593–6617. https://doi.org/10.1007/s00216‐015‐8858‐0.

28 Lu, L., Tian, S., Liao, H. et al. (2013). Analysis of metal element distributions in Rice (Oryza sativa L.) seeds and relocation during germination based on X‐ray fluorescence imaging of Zn, Fe, K, Ca, and Mn. PLoS One 8: e57360. https://doi.org/10.1371/journal.pone.0057360.

29 Mantouvalou, I., Lachmann, T., Singh, S.P.S.P. et al. (2017). Advanced absorption correction for 3D elemental images applied to the analysis of pearl millet seeds obtained with a laboratory confocal micro X‐ray fluorescence spectrometer. Anal. Chem. 89: 5453–5460. https://doi.org/10.1021/acs.analchem.7b00373.

30 Martínez‐Criado, G., Villanova, J., Tucoulou, R. et al. (2016). ID16B: a hard X‐ray nanoprobe beamline at the ESRF for nano‐analysis. J. Synchrotron Radiat. 23: 344–352. https://doi.org/10.1107/S1600577515019839.

31  Mazzolini, A.P., Legge, G.J.F., and Pallaghy, C.K. (1981). The distribution of trace elements in mature wheat seed using the Melbourne proton microprobe. Nucl. Inst. Methods Phys. Res. A 191: 583–589. https://doi.org/10.1016/0029‐554X(81)91066‐1.

32 Mazzolini, A., Pallaghy, C., and Legge, G. (1985). Quantitative microanalysis of Mn, Zn and other elements in mature wheat seed. New Phytol. 100: 1985.

33 Miller, L.M. and Dumas, P. (2006). Chemical imaging of biological tissue with synchrotron infrared light. Biochim. Biophys. Acta Biomembr. 1758: 846–857. https://doi.org/10.1016/j.bbamem.2006.04.010.

34 Moore, K.L., Schröder, M., Lombi, E. et al. (2010). NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol. 185: 434–445. https://doi.org/10.1111/j.1469‐8137.2009.03071.x.

35 Moretto, P. (1996). Nuclear microprobe: a microanalytical technique in biology. Cell. Mol. Biol. (Noisy‐le‐grand) 42: 1–16.

36 Nakata, Y., Yamada, H., Honda, Y. et al. (2008). Imaging mass spectrometry with swift heavy ions. J. Mass Spectrom. Soc. Jpn. 56: 201–208. https://doi.org/10.5702/massspec.56.201.

37 Nečemer, M., Kump, P., Ščančar, J. et al. (2008). Application of X‐ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochim. Acta Part B At. Spectrosc. 63: 1240–1247. https://doi.org/10.1016/j.sab.2008.07.006.

38 Nuñez, J., Renslow, R., Cliff, J.B., and Anderton, C.R. (2018). NanoSIMS for biological applications: current practices and analyses. Biointerphases 13: 03B301. https://doi.org/10.1116/1.4993628.

39 Perrin, L., Carmona, A., Roudeau, S., and Ortega, R. (2015). Evaluation of sample preparation methods for single cell quantitative elemental imaging using proton or synchrotron radiation focused beams. J. Anal. At. Spectrom. 30: 2525–2532. https://doi.org/10.1039/C5JA00303B.

40 Persson, D.P., de Bang, T.C., Pedas, P.R. et al. (2016). Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol. 211: 1255–1265. https://doi.org/10.1111/nph.13989.

41 Peukert, M., Thiel, J., Mock, H.P. et al. (2016). Spatiotemporal dynamics of oligofructan metabolism and suggested functions in developing cereal grains. Front. Plant Sci. 6 https://doi.org/10.3389/fpls.2015.01245.

42 Pongrac, P., Vogel‐Mikuš, K., Regvar, M. et al. (2011). Improved lateral discrimination in screening the elemental composition of buckwheat grain by micro‐PIXE. J. Agric. Food Chem. 59: 1275–1280. https://doi.org/10.1021/jf103150d.

43 Pongrac, P., Kreft, I., Vogel‐Mikus, K. et al. (2013a). Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain. J. R. Soc. Interface 10: 1742–5662. https://doi.org/10.1098/rsif.2013.0296.

44 Pongrac, P., Vogel‐Mikuš, K., Jeromel, L. et al. (2013b). Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum tataricum). Food Res. Int. 54: 125–131. https://doi.org/10.1016/j.foodres.2013.06.020.

45 Pongrac, P., Kelemen, M., Vavpetič, P. et al. (2020). Application of micro‐PIXE (particle induced X‐ray emission) to study buckwheat grain structure and composition. Fagopyrum 37: 5–10.

46 Regvar, M., Eichert, D., Kaulich, B. et al. (2011). New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X‐ray microscopy. J. Exp. Bot. 62: 3929–3939. https://doi.org/10.1093/jxb/err090.

47  Regvar, M., Eichert, D., Kaulich, B. et al. (2013). Biochemical characterization of cell types within leaves of metal‐hyperaccumulating Noccaea praecox (Brassicaceae). Plant Soil 373: 157–171. https://doi.org/10.1007/s11104‐013‐1768‐z.

48 Rodrigues, E.S., Gomes, M.H.F., Duran, N.M. et al. (2018). Laboratory microprobe X‐ray fluorescence in plant science: emerging applications and case studies. Front. Plant Sci. 871: 1588. https://doi.org/10.3389/fpls.2018.01588.

49 Römpp, A. and Spengler, B. (2013). Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139: 759–783. https://doi.org/10.1007/s00418‐013‐1097‐6.

50 Scheloske, S., Maetz, M., Schneider, T. et al. (2004). Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X‐ray emission. Protoplasma 223: 183–189. https://doi.org/10.1007/s00709‐003‐0027‐1.

51 Schneider, T., Scheloske, S., Povh, B., and Traxel, K. (2002). A method for cryosectioning of plant roots for proton microprobe analysis. Int. J. PIXE 12: 101–107. https://doi.org/10.1142/S0129083502000196.

52 Sen Gupta, S., Baksi, A., Roy, P. et al. (2017). Unusual accumulation of silver in the Aleurone layer of an Indian Rice (Oryza sativa) landrace and sustainable extraction of the metal. ACS Sustain. Chem. Eng. 5: 8310–8315. https://doi.org/10.1021/acssuschemeng.7b02058.

53 Simičič, J., Pelicon, P., Budnar, M., and Šmit, Ž. (2002). The performance of the Ljubljana ion microprobe. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 190: 283–286. https://doi.org/10.1016/S0168‐583X(01)01258‐7.

54 Singh, S.P., Vogel‐Mikus, K., Arcon, I. et al. (2013). Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. J. Exp. Bot. 64: 3249–3260. https://doi.org/10.1093/jxb/ert160.

55 Singh, S.P., Vogel‐Mikuš, K., Vavpetič, P. et al. (2014). Spatial X‐ray fluorescence micro‐imaging of minerals in grain tissues of wheat and related genotypes. Planta 240: 277–289. https://doi.org/10.1007/s00425‐014‐2084‐4.

56 Solé, V.A.A., Papillon, E., Cotte, M. et al. (2007). A multiplatform code for the analysis of energy‐dispersive X‐ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 62: 63–68. https://doi.org/10.1016/j.sab.2006.12.002.

57 Sturtevant, D., Aziz, M., and Chapman, K.D. (2018). Visualizing the oilseed lipidome. Int. News Fats, Oils Relat. Mater. 29: 21–24. https://doi.org/10.21748/inform.04.2018.21.

58 Tolrà, R., Vogel‐Mikuš, K., Hajiboland, R. et al. (2011). Localization of aluminium in tea (Camellia sinensis) leaves using low energy X‐ray fluorescence spectro‐microscopy. J. Plant Res. 124: 165–172. https://doi.org/10.1007/s10265‐010‐0344‐3.

59 Van Elteren, J.T., Izmer, A., Šelih, V.S., and Vanhaecke, F. (2016). Novel image metrics for retrieval of the lateral resolution in line scan‐based 2D LA‐ICPMS imaging via an experimental‐modeling approach. Anal. Chem. 88: 7413–7420. https://doi.org/10.1021/acs.analchem.6b02052.

60 Van Malderen, S.J.M., Managh, A.J., Sharp, B.L., and Vanhaecke, F. (2016). Recent developments in the design of rapid response cells for laser ablation‐inductively coupled plasma‐mass spectrometry and their impact on bioimaging applications. J. Anal. At. Spectrom. 31: 423–439. https://doi.org/10.1039/c5ja00430f.

61 Vavpetič, P., Kelemen, M., Jenčič, B., and Pelicon, P. (2017). Nuclear microprobe performance in high‐current proton beam mode for micro‐PIXE. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 404: 69–73. https://doi.org/10.1016/J.NIMB.2017.01.023.

62  Vogel‐Mikus, K., Regvar, M., Mesjasz‐Przybyłowicz, J. et al. (2008). Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro‐PIXE. New Phytol. 179: 712–721. https://doi.org/10.1111/j.1469‐8137.2008.02519.x.

63 Vogel‐Mikuš, K., Pelicon, P., Vavpetič, P. et al. (2009). Elemental analysis of edible grains by micro‐PIXE: common buckwheat case study. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267: 2884–2889. https://doi.org/10.1016/j.nimb.2009.06.104.

64 Vogel‐Mikuš, K., Pongrac, P., and Pelicon, P. (2014). Micro‐PIXE elemental mapping for ionome studies of crop plants. Int. J. PIXE https://doi.org/10.1142/S0129083514400142.

65 Warren, F.J., Perston, B.B., Galindez‐Najera, S.P. et al. (2015). Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure. Plant J. 84: 634–646. https://doi.org/10.1111/tpj.13031.

66 Wu, B. and Becker, J.S. (2012). Imaging techniques for elements and element species in plant science. Metallomics 4: 403. https://doi.org/10.1039/c2mt00002d.

67 Yan, B., Isaure, M.P., Mounicou, S. et al. (2020). Cadmium distribution in mature durum wheat grains using dissection, laser ablation‐ICP‐MS and synchrotron techniques. Environ. Pollut. 260: 113987. https://doi.org/10.1016/j.envpol.2020.113987.

68 Zhang, Y., Shi, R., Rezaul, K.M. et al. (2010). Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J. Agric. Food Chem. https://doi.org/10.1021/jf103039k.

Genome Engineering for Crop Improvement

Подняться наверх