Читать книгу Nanopharmaceutical Advanced Delivery Systems - Группа авторов - Страница 35
References
Оглавление1. Hoffman, A.S., The origins and evolution of “controlled” drug delivery systems. J. Control. Release, 132, 153–163, 2008.
2. Lei, Y., Lu, Y., Qi, J., Nie, S., Hu, F., Pan, W., Wu, W., Solid self-nanoemulsifying cyclosporine A pellets prepared by fluid-bed coating: preparation, characterization and in vitro redispersibility. Int. J. Nanomedicine, 6, 795–805, 2011.
3. Kommuru, T.R., Gurley, B., Khan, M.A., Reddy, I.K., Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm., 212, 233–246, 2001.
4. Raza, K., Singh, B., Singal, P., Wadhwa, S., Katare, O.P., Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf. B: Biointerfaces, 105, 67–74, 2013.
5. Barua, S. and Mitragotri, S., Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today, 9, 223–243, 2014.
6. Mohsin, K., Shahba, A.A., Alanazi, F.K., Lipid based self emulsifying formulations for poorly water soluble drugs-an excellent opportunity. Indian J. Pharm. Educ. Res., 46, 88–96, 2012.
7. Gupta, M., Agrawal, U., Vyas, S.P., Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 9, 783–804, 2012.
8. Raphael, A.P., Garrastazu, G., Sonvico, F., Prow, T.W., Formulation design for topical drug and nanoparticle treatment of skin disease. Ther. Deliv., 6, 197–216, 2015.
9. Smith, A. and Hunneyballlan, M., Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int. J. Pharm., 30, 215–220, 1986.
10. Siekmann, B. and Westesen, K., Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett., 1, 123–126, 1992.
11. Schmidt, P.C., Pharmazeutische Technologie: Moderne Arzneiformen. Lehrbuch für Studierende der Pharmazie, Nachschlagewerk für Apotheker in Offizin, Krankenhaus und Forschung. Von R. H. Müller und G. E. Hildebrand. 348 Seiten, 117 Abbildungen, 57 Tabellen. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1997, pp. 323–323, Pharm UnsererZeit, Germany, 1997.
12. Mann, E.A., Gurny, R., Doelker, E., Drug loaded nanoparticles-preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm., 39, 173–191, 1993.
13. Patidar, A., Thakur, D.A., Kumar, V., Verma, J., A review on novel lipid based nanocarriers. Int. J. Pharm. Pharm. Sci., 2, 3035, 2010.
14. Pinto, J.F. and Muller, R.H., Pellets as carriers of solid lipid nanoparticles (SLN) for oral administration of drugs. Pharmazie, 54, 506–509, 1999.
15. Sznitowska, M., Gajewska, M., Janicki, S., Radwanska, A., Lukowski, G., Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm., 52, 159–163, 2001.
16. Muller, R.H., Radtke, M., Wissing, S.A., Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 54, 131–155, 2002.
17. Olbrich, C., GeBner, A., Kayser, O., Muller, R.H., Lipid drug conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediacetu-rate. J. Drug Targeting, 10, 387–396, 2002.
18. Mueller., E.A., Kovarik, J.M., vanBree, J.B., Tetzloff, W., Grevel, J., Kutz, K., Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm. Res., 11, 301–304, 1994.
19. Sawant, R.R. and Torchilin, V.P., Challenges in Development of Targeted Liposomal Therapeutics. AAPS J., 14, 303–315, 2012.
20. Kong, X., Yu, K., Yu, M., Feng, Y., Wang, J., Li, M., A novel multifunctional poly (amidoamine) dendrimeric delivery system with superior encapsulation capacity for targeted 22 Nanopharmaceutical Advanced Delivery Systems delivery of the chemotherapy drug 10-hydroxycamptothecin. Int. J. Pharm., 465, 378–387, 2014.
21. Tila, D., Ghasemi, S., Yazdani-Arazi, S.N., Ghanbarzadeh, S., Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl., 30, 3–16, 2015.
22. Deamer, D.W., From “Banghasomes” to liposomes: A memoir of Alec Bangham, 1921-2010. FASEB J., 24, 1308–1310, 2010.
23. Swaminathan, J. and Ehrhardt, C., Liposomal delivery of proteins and peptides. Expert Opin. Drug Deliv., 9, 1489–1503, 2012.
24. Garg, T.K. and Goyal, A., Liposomes: targeted and controlled delivery system. Drug Deliv., 4, 62–71, 2014.
25. Xing, H., Hwang, K., Lu, Y., Recent Developments of Liposomes as Nanocarriers for theranostic applications. Theranostic, 6, 1336–1352, 2016.
26. Blume, G. and Cevc, G., Molecular mechanism of lipid vesicles longevity in-vivo. Biochim. Biophys. Acta, 1146, 157–168, 1993.
27. Allen, T.M. and Cullis, P.R., Liposomal drug delivery system from concept to clinical applications. Adv. Drug Deliv., 65, 36–48, 2013.
28. Kaneda, Y., Virosomes: evolution of the liposome as a targeted drug delivery system. Adv. Drug Deliv. Rev., 43, 197–205, 2000.
29. Samad, A., Sultana, Y., Aqil, M., Liposomal drug delivery systems: an update review. Curr. Drug Deliv., 4, 297–305, 2007.
30. Couvreur, P., Dubernet, C., Puisieux, F., Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur. J. Pharm. Biopharm., 41, 2–13, 1995.
31. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E., Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 70, 1–20, 2001.
32. Smith, A., Evaluation of poly (lactic acid) as a biodegradable drug delivery system for parenteral administration. Int. J. Pharm., 30, 215–220, 1986.
33. Muller, R.H., Mader, K., Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 1, 161–177, 2000.
34. Mehnert, W. and Mader, K., Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 47, 165–196, 2001.
35. Li, H., Zhao, X., Ma, Y., Zhai, G., Li, L., Lou, H., Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release, 133, 238–244, 2009.
36. Uner, M. and Yener, G., Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 3, 289–300, 2007.
37. Harde, H., Das, M., Jain, S., Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv., 8, 1407–1424, 2011.
38. M.R. Gasco, Method for Producing Solid Lipid Microspheres Having a Narrow Size Distribution, US Patent-US5250236A, 1993.
39. Ochekpe, N.A., Olorunfemi, P.O., Ngwuluka, N.C., Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop. J. Pharm., 8, 275–287, 2009.
40. Khurana, S., Utreja, P., Tiwary, A., Jain, N., Jain, S., Nanostructured lipid carriers and their application in drug delivery. Int. J. Biomed. Eng. Technol., 2, 152–171, 2009.
41. Iqbal, M.A., Md, S., Sahni, J.K., Baboota, S., Dang, S., Ali, J., Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Targeting, 10, 813–830, 2012.
42. Ranpise, N.S., Korabu, S.S., Ghodake, V.N., Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf. B Biointerfaces, 116, 81–87, 2014.
43. Tiwari, R. and Pathak, K., Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm., 415, 232–243, 2011.
44. Nanjwade, B.K., Patel, D.J., Udhani, R.A., Manvi., F.V., Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci. Pharm., 79, 705–727, 2011.
45. Tamjidi, F., Shahedi, M., Varshosaz, J., Nasirpour, A., Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 19, 29–43, 2013.
46. Chime, S., Kenechukwu, F., Attama, A., Nanoemulsions-advances in formulation, characterization and applications in drug delivery, in: Application of Nanotechnology in Drug Delivery, A.D. Sezer (Ed.), pp. 77–11, IntechOpen Limited, London, 2014.
47. Jaiswal., M., Dudhe, R., Sharma, P., Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5, 123–127, 2015.
48. Thiagarajan, P., Nanoemulsion for drug delivery through different routes. Res. Biotechnol., 2, 1–13, 2011.
49. Lovelyn, C. and Attama, A.A., Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol., 2, 626–639, 2011.
50. Pande, S.V. and Biyani, K.R., Microencapsulation by solvent evaporation method of BCS Class 4 drugs for bioavailability enhancement. J. Drug Deliv. Ther., 6, 18–30, 2016.
51. Mundhe, A.V., Fuloria, N.K., Biyani, K.R., Cocrystallization: an alternative approach for solid modification. J. Drug Deliv. Ther., 3, 166–172, 2013.
52. Shelke, P.V., Dumbare, A.S., Gadhave, M.V., Jadhav, S.L., Sonawane, A.A., Gaikwad, D.D., Formulation and evaluation of rapidly dis integrating film of amlodipine besylate. J. Drug Deliv. Ther., 2, 72–75, 2012.
53. Maurya, S.D., Arya, R.K.K., Rajpal, G., Dhakar, R.C., Self-micro emulsifying drug delivery systems (SMEDDs): A review on physico-chemical and biopharmaceutical aspects. J. Drug Deliv. Ther., 7, 55–65, 2017.
54. Agrawal, S., Giri, T.K., Tripathi, D.K., Ajazuddin, Alexander, A., A review on noval therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid based Self Micro Emulsifying Drug Delivery System: A Novel Approach. Am. J. Drug Discov., 2, 143–183, 2012.
55. Gursoy, R.N. and Benita, S., Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 58, 173–182, 2004.
56. Wu, W., Wang, Y., Que, L., Enhanced bioavailability of silymarin by self-micro emulsifying drug delivery system. Eur. J. Pharm. Biopharm., 63, 288–294, 2006.
57. Kang, B.K., Lee, J.S., Chon, S.K., Jeong, S.Y., Yuk, S.H., Khang, G. et al., Development of self-micro emulsifying drug delivery systems (SMEDDs) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm., 274, 65–73, 2004.
58. Ishiwa, J., Sato, T., Mimaki, Y., Sashida, Y., Yano, M., Ito, A., A citrus flavonoid, nobiletin, suppresses production and gene expression of matrixmetalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. J. Rheumatol., 27, 20–25, 2000.
59. Lin, N., Sato, T., Takayama, Y., Mimaki, Y., Sashida, Y., Yano, M. et al., Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem. Pharmacol., 65, 2065–2071, 2003.
60. Gursoy, R.N. and Benita, S., Self-emulsifying drug delivery systems (SMEDDs) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 58, 173–182, 2004.
61. Constantinides, P.P., Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res., 12, 1561–1572, 1995.
62. Shah, N.H., Carvajal, M.T., Patel, C.I., Infeld, M.H., Malick, A.W., Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm., 106, 15–23, 1994.
63. Pouton, C.W., Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int. J. Pharm., 27, 335–348, 1985.
64. Wakerly, M.G., Pouton, C.W., Meakin, B.J., Evaluation of the self-emulsifying performance of a non-ionic surfactant-vegetable oil mixture. J. Pharm. Pharmacol., 39, 6, 1987.
65. Charman, S.A., Charman, W.N., Rogge, M.C., Wilson, T.D., Dutko, F.J., Pouton, C.W., Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res., 9, 87–93, 1992.
66. Cherniakov, I., Domb, A.J., Hoffman, A., Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin. Drug Deliv., 12, 1121–1133, 2015.
67. Soni, G.C., Prajapati, S.K., Chaudhri., N., Self Nanoemulsion, Advance Form of Drug Delivery System. WJPPS, 3, 410–436, 2014.
68. Rao, C.B., Vidyadhara, S., Sasidhar, R.L.C., Chowdary, Y.A., Design And Evaluation of Self-Nanoemulsified Drug Delivery System (SNEDDS) of Docetaxel by Optimizing the Particle Size using Response Surface Methodology. IAJPS, 1, 35–45, 2014.
69. Radha, G.V., Sastri, K.T., Burada, S., Rajkumar, J., A systematic review on self-micro emulsifying drug delivery systems: A potential strategy for drugs with poor oral bioavailability. Int. J. App. Pharm., 11, 23–33, 2019.
70. Shalaev, E., Wu, K., Shamblin, S., Krzyzaniak, J.F., Descamps, M., Crystalline mesophases: Structure, mobility, and pharmaceutical properties. Adv. Drug Deliv. Rev., 100, 194–211, 2016.
71. Pikal, M.J., Lukes, A.L., Lang, J.E., Gaines, K., Quantitative crystallinity determinations for beta-lactam antibiotics by solution calorimetry: correlations with stability. J. Pharm. Sci., 67, 767–773, 1978.
72. Lefort, R., Caron, V., Willart, J.F., Descamps, M., Mutarotational kinetics and glass transition of lactose. Solid State Commun., 140, 329–334, 2006.
73. Dujardin, N., Dudognon, E., Willart, J.F., Hédoux, A., Guinet, Y., Paccou, L. et al., Solid state mutarotation of glucose. J. Phys. Chem., 115, 1698–1705, 2011.
74. Mo, J., Milleret, G., Nagaraj, M., Liquid crystal nanoparticles for commercial drug delivery. Liq. Cryst. Rev., 5, 69–85, 2017.
75. Johari, G.P., Kim, S., Shanker, R.M., Dielectric study of equimolar acetaminophenaspirin, acetaminophen-quinidine, and benzoic acid-progesterone molecular alloys in the glass and ultraviscous states and their relevance to solubility and stability. J. Pharm. Sci., 99, 1358–1374, 2010.
76. Johari, G.P., Secondary relaxations and the properties of glasses and liquids, in: Molecular Dynamics and Relaxation Phenomena in Glasses, T. Dorfmüller and G. Williams (Eds.), pp. 90–112, Springer, Berlin Heidelberg, 1987.
77. Esposito, E., Cortesi, R., Drechsler, M., Paccamiccio, L., Mariani, P., Contado, C. et al., Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res., 22, 2163–2173, 2005.
78. Li, J., Wu, L., Wu, W., Wang, B., Wang, Z., Xin, H. et al., A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int. J. Pharm., 455, 75–84, 2013.
79. Lippacher, A., Müller, R., Mäder, K., Investigation on the viscoelastic properties of lipid based colloidal drug carriers. Int. J. Pharm., 196, 227–230, 2000.
80. Mehnert, W. and Mäder, K., Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 47, 165–196, 2001.
81. Shah, R., Eldridge, D., Palombo, E., Harding, I., Lipid Nanoparticles: Production, Characterization and Stability, Springer International Publishing, USA, 2015.
82. Battaglia, L., Trotta, M., Gallarate, M., Carlotti, M.E., Zara, G.P., Bargoni, A., Solid lipid nanoparticles formed by solvent-in-water emulsion–diffusion technique: development and influence on insulin stability. J. Microencapsul., 24, 672–684, 2007.
83. Svilenov, H. and Tzachev, C., Solid lipid nanoparticles–a promising drug delivery system, in: nanomedicines, A. Seifalian, A. de Mel, D.M. Kalaskar (Eds.), pp. 187–237, One Central Press Ltd, Manchester, 2014.
84. Schubert, M. and Müller-Goymann, C., Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Eur. J. Pharm. Biopharm., 55, 125–131, 2003.
85. Battaglia, L., Gallarate, M., Panciani, P.P., Sapino, S., Peira, E., Chirio, D., Techniques for the Preparation of Solid Lipid Nano and Microparticles, in: Application of Nanotechnology in DrugDelivery, A.D. Sezer (Ed.), pp. 51–75, IntechOpen Limited, London, 2014.
86. Charcosset, C., El-Harati, A., Fessi, H., Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release, 108, 112–120, 2005.
87. Hou, D., Xie, C., Huang, K., Zhu, C., The production and characteristics of solid lipid nanoparticles (SLN). Biomaterials, 24, 1781–1785, 2003.
88. Liu, J., Gong, T., Wang, C., Zhong, Z., Zhang, Z., Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles. Preparation and characterization. Int. J. Pharm., 340, 153–162, 2007.
89. Li, Y., Taulier, N., Rauth, A.M., Wu, X.Y., Screening of lipid carriers and characterization of drug-polymer complex for the rational design of polymer-lipid hybrid nanoparticles. Pharm. Res., 23, 1877–1887, 2006.
90. Mehnert, W. and Mader, K., Solid lipid nanoparticles. Production, characterization and applications. Adv. Drug Deliv. Rev., 47, 165–196, 2001.
91. Pecora, R., Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res., 2, 123–131, 2000.
92. Heurtault, B., Saulnier, P., Pech, B., Proust, J.E., Benoit, J.P., Physico-chemical stability of colloidal lipid particles. Biomaterials, 24, 4283–4300, 2003.
93. Zimmermann, E. and Muller, R.H., Electrolytes- and pH-stability of aqueous solid lipid nanoparticles (SLN) dispersion in artificial gastrointestinal media. Eur. J. Pharm. Biopharm., 52, 203–210, 2001.
94. Videira, M.A., Botelho, M.F., Santos, A.C., Gouveia, L.F., de Lima, J.J., Almeida, A.J., Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Targeting, 8, 607–613, 2002.
95. Lin, P.C., Lin, S., Wang, P.C., Sridhar, R., Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 32, 711–726, 2014.
96. Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J. et al., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc., 130, 2780–2782, 2008.
97. Brar, S.K. and Verma, M., Measurement of nanoparticles by light-scattering techniques. Trends Analyt. Chem., 30, 4–17, 2011.
98. Hall, J.B., Dobrovolskaia, M.A., Patri, A.K., McNeil, S.E., Characterization of nanoparticles for therapeutics. Nanomedicine (Lond.), 2, 789–803, 2007.
99. Kumar, R., Siril, P.F., Soni, P., Preparation of nano-RDX by evaporation assisted solvent antisolvent interaction. Propellants Explos. Pyrotech., 39, 383–389, 2014.
100. Kumar, R., Siril, P.F., Soni, P., Optimized synthesis of HMX nanoparticles using antisolvent precipitation method. J. Energ. Mater., 33, 277–287, 2015.
101. Su, D., Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ., 2, 2, 70–83, 2017.
102. Gaisin, N.K., Gnezdilov, O.I., Pashirova, T.N., Zhil’tsova, E.P., Lukashenko., S.S., Aakharova, L.Y. et al., Micellar and liquid-crystalline properties of bicyclic fragment-containing cationic surfactant. Colloid J., 72, 764–770, 2010.
103. Bibi, S., Kaur, R., Henriksen-Lacey, M., McNeil, S.E., Wilkhu, J., Lattmann, E. et al., Microscopy imaging of liposomes: from coverslips to environmental SEM. Int. J. Pharm., 417, 138–150, 2011.
104. Rissi, N.C., Guglielmi, D.A.S., Corrêa, M.A., Chiavacci, L.A., Relationship between composition and organizational levels of nanostructured systems formed by Oleth 10 and PPG-5-Ceteth-20 for potential drug delivery. BJPS, 50, 653–661, 2014.
105. Eaton, P. and West, P., Atomic force microscopy, Oxford University Press, United Kingdom, 2010.
106. Hanley, S.J. and Gray, D.G., Atomic force microscopy, CRC Press Inc., Boca Raton, FL, 1995.
107. Xu, R., Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology, 6, 112–115, 2008.
108. Chorom., M. and Rengasamy, P., Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. Eur. J. Soil Sci., 46, 657–665, 1995.
109. Wendlandt, W.W., Thermal methods of analysis, Wiley-Interscience, New York, 1974.
110. Kumar, D., Kapoor, I.P., Singh, G., Siril, P.F., Tripathi, A.M., Preparation, characterization, and catalytic activity of nanosized NiO and ZnO: part 74. Propellants. Explos. Pyrotech., 36, 268–272, 2011.
111. Kumar, R., Siril, P.F., Soni, P., Tuning the particle size and morphology of high energeticmaterial nanocrystals. Def. Technol., 11, 382–389, 2015.
112. Chauhan, H., Mohapatra, S., Munt, D.J., Chandratre, S., Dash, A., Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles. AAPS Pharm. Sci. Tech., 17, 640–651, 2016.
113. Stuart, B., Infrared spectroscopy, pp. 1–20, Wiley Online Library, Germany, 2005.
114. Kumar, R., Siril, P.F., Javid, F., Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C, 69, 1335–1344, 2016.
115. Suryanarayana, C. and Norton, M.G., X-ray diffraction: a practical approach, Springer Science & Business Media, Germany, 2013.
116. Esposito, E., Mariani, P., Drechsler, M., Cortesi, R., Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM), in: Handbook of Nanoparticles, M. Aliofkhazraei (Ed.), Springer, Cham, 2016.
117. Faix, O., Fourier transform infrared spectroscopy, in: Methods in lignin chemistry, pp. 233–241, Springer, Germany, 1992.
118. Kumar, R. and Siril, P.F., Enhancing the solubility of fenofibrate by nanocrystal formation and encapsulation. AAPS Pharm. Sci. Tech., 19, 284–292, 2018.
119. Nekkanti, V. and Kalepu, S., Recent Advances in Liposomal Drug Delivery: A Review. Pharm. Nanotechnol., 3, 35–55, 2015.
120. Khan, I., Kumar, H., Mishra, G., Gothwal, A., Kesharwani, P., Gupta, U., Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Curr. Pharm. Des., 23, 5315–5326, 2018.
121. Dong, Y.D., Tchung, E., Nowell, C., Kaga, S., Leong, N., Mehta, D. et al., Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J. Liposome Res., 29, 1–9, 2019.
122. Hua, S. and Wu, S.Y., The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol., 4, 143, 2013.
123. Hua, S. and Cabot, P.J., Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: A potential novel treatment of acute and chronic pain conditions. Pain Physician, 16, 199–216, 2013.
124. Ghasemiyeh, P. and Mohammadi-Samani, S., Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 13, 288–303, 2018.
125. Tabatt, K., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.M., Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur. J. Pharm. Biopharm., 57, 155–162, 2004.
126. Pedersen, N., Hansen, S., Heydenreich, A.V., Kristensen, H.G., Poulsen, H.S., Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur. J. Pharm. Biopharm., 62, 155–162, 2006.
127. Fatouh, A.M., Elshafeey, A.H., Abdelbary, A., Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther., 11, 1815–1825, 2017.
128. Khosa, A., Reddi, S., Saha, R.N., Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 103, 598–613, 2018.
129. Song, S., Mao, G., Du, J., Zhu, X., Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv., 23, 1404–1408, 2016.
130. Blasi, P., Giovagnoli, S., Schoubben, A., Ricci, M., Rossi, C., Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev., 59, 454–477, 2007.
131. Ahmad, N., Ahmad, R., Alam, M.A., Samim, M., Iqbal, Z., Ahmad, F.J., Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol., 88, 320–332, 2016.
132. Fenske, D.B. and Cullis, P.R., Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol., 391, 7–40, 2005.
133. Lovelyn, C. and Attama, A.A., Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol., 2, 626–639, 2011.
134. Shalaev, E., Wu, K., Shamblin, S., Krzyzaniak, J.F., Descamps, M., Crystalline mesophases: Structure, mobility, and pharmaceutical properties. Adv. Drug Deliv. Rev., 100, 194–211, 2016.
135. Descamps, G., Wattiez, R., Saussez, S., Proteomic study of HPV-positive head and neck cancers: Preliminary results. Biomed. Res. Int., 2014, 430906, 2014.
136. Wang, L., Cho, H., Lee, S.H., Lee, C., Jeong, K.U., Lee, M.H., Liquid crystalline mesophases based on symmetric tetrathiafulvalene derivatives. J. Mater. Chem., 21, 60–64, 2011.
137. Shankar, R., Rowe, C., Van Hoorn, A., Henley, W., Laugharne, R., Cox, D. et al., Under representation of people with epilepsy and intellectual disability in research. PLoS One, 13, e0198261, 2018.
138. Yu, S., Bi, X., Yang, L., Wu, S., Yu, Y., Jiang, B. et al., Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J. Biomed. Nanotechnol., 15, 6, 1135–1148, 2019.
139. Barba, A.A., Bochicchio, S., Dalmoro, A., Lamberti, G., Lipid delivery systems for nucleic-acid-based-drugs: From production to clinical applications. Pharmaceutics, 11, E360, 2019.
140. Tabernero, J., Shapiro, G.I., LoRusso, P.M., Cervantes, A., Schwartz, G.K., Weiss, G.J. et al., First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 3, 406–417, 2013.
141. Jayaraman, M., Ansell, S.M., Mui, B.L., Tam, Y.K., Chen, J., Du, X. et al., Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo. Angew. Chem., 124, 8657–8661, 2012.
142. Coelho, T., Adams, D., Silva, A., Lozeron, P., Hawkins, P.N., Mant, T. et al., Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med., 369, 819–829, 2013.
143. Frank-Kamenetsky, M., Grefhorst, A., Anderson, N.N., Racie, T.S., Bramlage, B., Akinc, A. et al., Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA, 105, 11915–11920, 2008.
144. Tolcher, A.W., Papadopoulos, K.P., Patnaik, A., Rasco, D.W., Martinez, D., Wood, D.L. et al., Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J. Clin. Oncol., 33, 11006–11006, 2015.
145. Flisiak, R., Jaroszewicz, J., Łucejko, M., siRNA drug development against hepatitis B virus infection. Expert Opin. Biol. Ther., 18, 609–617, 2018.
146. Haque, A., Hober, D., Blondiaux, J., Addressing therapeutic options for Ebola virus infection in current and future outbreaks. Antimicrob. Agents Chemother., 59, 5892–8902, 2015.
147. Landen, C.N., Chavez-Reyes, A., Bucana, C., Schmandt, R., Deavers, M.T., Lopez-Berestein, G. et al., Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res., 65, 6910–6918, 2005.
148. Niu, Z., Conejos-Sánchez, I., Griffin, B.T., O’Driscoll., C.M., Alonso, M.J., Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Deliv. Rev., 106, 337–354, 2016.
149. Sarmento, B., Martins, S., Ferreira, D., Souto, E.B., Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine, 2, 743–749, 2007.
150. Fan, T., Chen, C., Guo, H., Xu, J., Zhang, J., Zhu, X. et al., Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur. J. Pharm. Biopharm., 88, 518–528, 2014.
151. Hu, F.Q., Hong, Y., Yuan, H., Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm., 273, 29–35, 2004.
152. Yang, R., Gao, R., Li, F., He, H., Tang, X., The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev. Ind. Pharm., 37, 139–148, 2011.
153. Yuan, H., Jiang, S.P., Du, Y.Z., Miao, J., Zhang, X.G., Hu, F.Q., Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf. B Biointerfaces, 70, 248–253, 2009.
154. Kashanian, S. and Rostami, E., PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J. Nanopart. Res., 16, 2293, 2014.
155. Christophersen, P.C., Zhang, L., Yang, M., Nielsen, H.M., Müllertz, A., Mu, H., Solid lipid particles for oral delivery of peptide and protein drugs I—Elucidating the release mechanism of lysozyme during lipolysis. Eur. J. Pharm. Biopharm., 85, 473–480, 2013.
156. Bakala-N’Goma, J.C., Williams, H.D., Sassene, P.J., Kleberg, K., Calderone, M., Jannin, V. et al., Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. lipolysis of representative formulations by gastric lipase. Pharm. Res., 32, 4, 1279–1287, 2015.
157. Kisel, M.A., Kulik, L.N., Tsybovsky, I.S., Vlasov, A.P., Vorob’yov, M.S., Kholodova, E.A. et al., Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: Studies in the rat. Int. J. Pharm., 216, 105–114, 2001.
158. Thirawong, N., Thongborisute, J., Takeuchi, H., Sriamornsak, P., Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J. Control. Release, 125, 236–245, 2008.
159. Kowapradit, J., Apirakaramwong, A., Ngawhirunpat, T., Rojanarata, T., Sajomsang, W., Opanasopit, P., Methylated N-(4-N,N-dimethylaminobenzyl) chitosan coated liposomes for oral protein drug delivery. Eur. J. Pharm. Sci., 47, 359–366, 2012.
160. Carafa, M., Marianecci, C., Annibaldi, V., Di Stefano, A., Sozio, P., Santucci, E., Novel O-palmitoylscleroglucan-coated liposomes as drug carriers: Development, characterization and interaction with leuprolide. Int. J. Pharm., 325, 155–162, 2006.
161. Li, H., Jun, H.A., Park, J.S., Han, K., Multivesicular liposomes for oral delivery of recombinant human epidermal growth factor. Arch. Pharm. Res., 28, 988–994, 2005.
162. Parmentier, J., Thewes, B., Gropp, F., Fricker, G., Oral peptide delivery by tetraether lipid liposomes. Int. J. Pharm., 415, 150–157, 2011.
163. Tan, M.L., Choong, P.F.M., Dass, C.R., Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides, 31, 184–193, 2010.
164. Sun, H., Liu, K., Liu, W., Wang, W., Guo, C., Tang, B. et al., Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs. Int. J. Nanomedicine, 7, 5529–5543, 2012.
165. Trenktrog, T. and Müller, B.W., Preparation and characterization of a peptide containing w/o emulsion. Int. J. Pharm., 123, 199–207, 1995.
1 * Corresponding author: vikasjain@jssuni.edu.in