Читать книгу Green Energy - Группа авторов - Страница 43

References

Оглавление

1. S. Tatsuo, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials 2, 96–102, 2010.

2. S. Sahoo, S. Pradhan, & S. Das, Superhydrophobic antireflective polymer coatings with improved solar cell efficiency. Superhydrophobic Polymer Coatings, 281-297, 2019.

3. Y. C. Wang, T. T. Wu, Y. L. Chueh, A critical review on flexible Cu(In, Ga)Se2 (CIGS) solar cells, Materials Chemistry and Physics 234, 329-344, 2019.

4. A. N. Tiwari, A. Romeo, D. Baetzner & H. Zogg, Flexible CdTe solar cells on polymer films, Prog. Photovolt: Res. Appl. 9, 211-215, 2001.

5. J. Ramanujam, D. M. Bishop, T. K. Todorov, O. Gunawan, J. Rath, R. Nekovei, A. Romeo, Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 2019. 100619. doi:10.1016/j. pmatsci.2019.100619.

6. International Technology Roadmap for Photovoltaic (ITRPV), ninth ed., September 2018, available at: http://www.itrpv.net/Reports/Downloads.

7. J. Schmidt, R. Peibst, R. Brendel, Surface passivation of crystalline silicon solar cells: present and future, Sol. Energy Mater. Sol. Cell. 187, 39-54, 2018.

8. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. HoBaillie, Solar cell efficiency tables (version 54), Prog. Photovoltaics Res. Appl. 27, 565-575, 2019.

9. A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Thin-film silicon solar cell technology, Prog. Photovoltaics Res. Appl. 12, 113-142, 2004.

10. M.A. Green, The passivated emitter and rear cell (PERC): from conception to mass production, Sol. Energy Mater. Sol. Cell. 143, 190-197, 2015.

11. J. Bartsch, A. Mondon, K. Bayer, C. Schetter, M. Horteis, S.W. Glunz, Quick determination of copper-metallization long-term impact on silicon solar cells, J. Electrochem. Soc. 157(10), H942-H946, 2010.

12. E. Van Kerschaver, G. Beaucarne, Back-contact solar cells: a review, Prog. Photovoltaics Res. Appl. 14, 107-123, 2006.

13. https://us.sunpower.com/solar-panels-technology/x-series-solar-panels.

14. https://www.trinasolar.com/us/resources/newsroom/trina-solar-announces-newefficiency-record-2504-large-area-ibc-mono-crystalline.

15. N. Ali, R. Ahmed, J. T. Luo, M. Wang, A. Kalam, A. G. Al-Sehemi & Y. Q. Fu, Advances in nanostructured homojunction solar cells and photovoltaic materials. Materials Science in Semiconductor Processing, 107, 104810, 2020. doi:10.1016/j.mssp.2019.104810.

16. M. Jaysankar, B.A.L. Raul, J. Bastos, C. Burgess, C. Weijtens, M. Creatore, T. Aernouts, Y. Kuang, R. Gehlhaar, A. Hadipour, J. Poortmans, Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells, ACS Energy Lett. 4, 259-264, 2019.

17. https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency>, 20 December 2018.

18. K. Ding, U. Aeberhard, F. Finger, U. Rau, Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers, Phys. Status Solidi RRL 6 193-195, 2012.

19. M. Izzi, M. Tucci, L. Serenelli, P. Mangiapane, M. Della Noce, I. Usatii, E. Esposito, L.V. Mercaldo, P. DelliVeneri, Doped SiOx emitter layer in a morphous/crystalline silicon heterojunction solar cell, Appl. Phys. Mater. Sci. Process 115, 705, 2014.

20. L. Mazzarella, S. Kirner, B. Stannowski, L. Korte, B. Rech, R. Schlatmann, p-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm2, Appl. Phys. Lett. 106, 023902, 2015.

21. M. Boccard, Z.C. Holman, Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells, J. Appl. Phys. 118, 065704, 2015.

22. L.V. Mercaldo, E. Bobeico, I. Usatii, M. Della Noce, L. Lancellotti, L. Serenelli, M. Izzi, M. Tucci, P. DelliVeneri, Potentials of mixed-phase doped layers in ptype Si heterojunction solar cells with ZnO:Al, Sol. Energy Mater. Sol. Cell. 169, 113-121, 2017.

23. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto,D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Ener. 2, 17032, 2017.

24. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, , … L. Qiao, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 201, 227–246, 2020. doi:10.1016/j. solener.2020.03.009.

25. L.V. Mercaldo, I. Usatii, E.M. Esposito, P. DelliVeneri, J.W. Schuttauf, E. Moulin, F.J. Haug, C. Zhang, M. Meier, Metal versus dielectric back reflector for thin-film Si solar cells with impact of front electrode surface texture, Prog. Photovoltaics Res. Appl. 24 (2016) 968-977.

26. L.V. Mercaldo, I. Usatii, P. DelliVeneri, Advances in thin-film Si solar cells by means of SiOx alloys, Energies 9 (3), 218, 2016.

27. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9, 205-213, 2010.

28. M. J. Naughton, K. Kempa, Z.F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao,Y. Wang, Y. Peng, J.R. Naughton, G. McMahon, M.J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Soderstr € om, O. Cubero, C. Eminian, Efficient nanocoax-based solar cells, Physica Status Solidi RRL 4, 181-183, 2010.

29. M. Vanececk, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, U. Kroll, Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential, Appl. Phys. Lett. 98, 163503, 2011.

30. V. Ferry, M.A. Verschuuren, M.C. van Lare, R.E.I. Schropp, H.A. Atwater, A. Polman, Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells, Nano Lett. 11, 4239-4245, 2011.

31. C. Battaglia, C.M. Hsu, K. Soderstr € om, J. Escarré, F.J. Haug, M. Charriere,M. Boccard, M. Despeisse, D. Alexander, M. Cantoni, Y. Cui, C. Ballif, Light trapping in solar cells: can periodic beat random? ACS Nano 6, 2790-2797, 2012.

32. A. Micco, A. Ricciardi, M. Pisco, V. La Ferrara, L.V. Mercaldo, P. DelliVeneri, A. Cutolo, A. Cusano, Light trapping efficiency of periodic and quasiperiodic backreflectors for thin film solar cells: a comparative study, J. Appl. Phys. 114, 063103, 2013.

33. H. Sai, K. Saito, N. Hozuki, M. Kondo, Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film micro-crystalline silicon solar cells, Appl. Phys. Lett. 102, 053509, 2013.

34. U.W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov,D. Michaelis, C. Waechter, R. Carius, U. Rau, Disorder improves nanophotonic lighttrapping in thin-film solar cells, Appl. Phys. Lett. 104, 131102, 2014.

35. K. Soderstr € om, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, C. Ballif, UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells, Prog. Photovoltaics Res. Appl. 19, 202-210, 2011.

36. C. Battaglia, J. Escarré, K. Soderstr € om, M. Charri € ere, M. Despeisse, F.-J. Haug, C. Ballif, Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells, Nat. Photon. 5, 535-538, 2011.

37. A. Richter, M. Hermle, S. Glunz, Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells, IEEE J. Photovolt. 3, 1184-1191, 2013.

38. A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S.W. Glunz, n-type Si solarcells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation, Sol. Energy Mater. Sol. Cell. 173, 96-105, 2017.

39. F. Haase, C. Hollemann, S. Sch€afer, A. Merkle, M. Rien€acker, J. Krugener, R. Brendel, R. Peibst, Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells, Sol. Energy Mater. Sol. Cell. 186, 184-193, 2018.

40. J. Geissbuhler, J. Werner, S. Martin de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector, Appl. Phys.Lett. 107, 081601, 2015.

41. S. Essig, C. Allebé, T. Remo, J.F. Geisz, M.A. Steiner, K. Horowitz, L. Barraud, J.S. Ward, M. Schnabel, A. Descoeudres, D.L. Young, M. Woodhouse, M. Despeisse, C. Ballif, A. Tamboli, Raising the one-sun conversion efficiency of IIIeV/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nat. Ener. 2, 17144, 2017.

42. L. V. Mercaldo, & P. Delli Veneri, Silicon solar cells: materials, technologies, architectures. Solar Cells and Light Management, 35-57, 2020. doi:10.1016/ b978-0-08-102762-2.00002-1

43. H.J. Snaith, Present status and future prospects of perovskite photovoltaics, Nat.Mater. 17, 372-376, 2018. https://doi.org/10.1038/s41563-018-0071-z.

44. J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications, Nat. Rev. Mater. 2, 17042, 2017. https://doi.org/10.1038/natrevmats.2017.42.

45. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites asvisible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131, 6050-6051, 2009, https://doi.org/10.1021/ja809598r.

46. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart jPhotovoltaic Research, NREL, 2018. www.nrel.gov/pv/cell-efficiency.html.

47. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 53), Prog. Photovoltaics Res. Appl. 27, 3-12, 2019 https://doi.org/10.1002/pip.3102.

48. N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Gr€atzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized Perovskite solar cells 209 efficiencies greater than 20%, Science 80, 358 768-771, 2017. https://doi.org/10.1126/SCIENCE.AAM5655.

49. N.Y. Nia, F. Matteocci, L. Cina, A. Di Carlo, High-efficiency perovskite solar cell based on poly(3-hexylthiophene): influence of molecular weight and mesoscopic scaffold layer, ChemSusChem 10, 3854-3860, 2017. https://doi.org/10.1002/cssc.201700635.

50. M.K. Sardashti, M. Zendehdel, N.Y. Nia, D. Karimian, M. Sheikhi, High efficiency MAPbI 3 perovskite solar cell using a pure thin film of polyoxometalate as scaffold layer, ChemSusChem 10, 3773-3779, 2017. https://doi.org/10.1002/cssc.201701027.

51. D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya,S. Liu, High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2, Nat. Commun. 9, 3239, 2018. https://doi.org/10.1038/s41467-018-05760-x.

52. S. B. Babak Taheri1, NargesYaghoobi Nia, antonioagresti, sarapescetelli, Claudio ciceroni, antonioesau del riocastillo, luciocin a, A.D.C. Francesco bonaccorso, graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up, 2D Mater, 2018. https://doi.org/10.1088/2053-1583/aad983 Manuscript.

53. W. Nie, H. Tsai, J.-C.Blancon, F. Liu, C.C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P.M. Ajayan, M. Kanatzidis, J. Even, A.D. Mohite, Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide, Adv. Mater. 30 1703879, 2018. https://doi.org/10.1002/adma.201703879.

54. P. Meredith, A. Armin, Scaling of next generation solution processed organic and perovskite solar cells, Nat. Commun. 9, 5261, 2018. https://doi.org/10.1038/s41467-018-05514-9.

55. N. Yaghoobi Nia, M. Zendehdel, L. Cina, F. Matteocci, A. Di Carlo, A crystal engineering approach forscalable perovskite solar cells and module fabrication: a full out of glove box procedure, J. Mater. Chem. A. 6 659-671, 2018. https://doi.org/10.1039/C7TA08038G.

56. A.L. Palma, F. Matteocci, A. Agresti, S. Pescetelli, E. Calabro, L. Vesce, S. Christiansen, M. Schmidt, A. Di Carlo, Laser-patterning engineering for perovskite solar modules with 95% aperture ratio, IEEE J. Photovoltaics, 2017. https://doi.org/10.1109/JPHOTOV.2017.2732223.

57. Y. Rong, Y. Ming, W. Ji, D. Li, A. Mei, Y. Hu, H. Han, Toward industrial-scale-production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques, J. Phys. Chem. Lett. 9, 2707-2713, 2018. https://doi.org/10.1021/acs.jpclett.8b00912.

58. F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells, Energy Environ. Sci. 12, 518-549, 2019. https://doi.org/10.1039/C8EE03025A.

59. S. Razza, S. Castro-Hermosa, A. Di Carlo, T.M. Brown, Research Update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology, Apl. Mater.4, 2016, https://doi.org/10.1063/1.4962478.

60. Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry, M.F.A.M. van Hest, K. Zhu, Scalable fabrication of perovskite solar cells, Nat. Rev. Mater. 3, 18017, 2018. https://doi.org/10.1038/natrevmats.2018.17.

61. K. Hwang, Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones,D.Y. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells, Adv. Mater. 27, 1241-1247, 2015. https://doi.org/10.1002/adma.201404598.

62. Chen, Y., Meng, Q., Zhang, L., Han, C., Gao, H., Zhang. Y., Yan, H. SnO 2-based electron transporting layer materials for perovskite solar cells: A review of recent progress, Journal of Energy Chemistry 35, 144-167 2019.

63. L.F. Schneemeyer, J.V. Waszczak, S.M. Zahorak, R.B. van Dover, T. Siegrist, Superconductivity in rare earth cup rate perovskites, Mater. Res. Bull. 1987. https://doi.org/10.1016/0025-5408(87)90211-X.

64. T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado,M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong, R.J. Cava, Superconductivity in the non-oxide perovskite MgCNi3, Nature 411, 54-56, 2001. https://doi.org/10.1038/35075014.

65. M. Bazzan, C. Sada, Optical waveguides in lithium niobate: recent developments and applications, Appl. Phys. Rev. 2015. https://doi.org/10.1063/1.4931601.

66. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, J. Seo, J.H. Noh, S. IlSeok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostableperovskite solar cells, Science 80, 2017. https://doi.org/10.1126/science.aam6620.

67. H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials, Solid State Ionics, 1992. https://doi.org/10.1016/0167-2738(92)90090-C.

68. M. Gratzel, The rise of highly efficient and stable perovskite solar cells, Acc. Chem. Res. 50, 487-491, 2017. https://doi.org/10.1021/acs.accounts.6b00492.

69. V.M. Goldschmidt, Die gesetze der Krystallochemie, Naturwissenschaften 14, 477-485, 1926. https://doi.org/10.1007/BF01507527.

70. G. Kieslich, S. Sun, A.K. Cheetham, An extended Tolerance Factor approach for organic e inorganic perovskites, Chem. Sci. 6, 3430-3433, 2015. https://doi.org/10.1039/C5SC00961H.

71. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the-application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chem. Sci. 7, 4548-4556, 2016. https://doi.org/10.1039/c5sc04845a.

72. M. Becker, T. Kluner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors, DaltonTrans. 46, 3500-3509, 2017. https://doi.org/10.1039/c6dt04796c.

73. W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham, Chemically diverse and multifunctional hybrid organic-inorganic perovskites, Nat. Rev. Mater. 2017. https://doi.org/10.1038/natrevmats.2016.99.

74. P.S. Whitfield, N. Herron, W.E. Guise, K. Page, Y.Q. Cheng, I. Milas,M.K. Crawford, Structures, phase transitions and tricriticalbehavior of the hybridperovskite methyl ammonium lead iodide, Sci. Rep. 2016. https://doi.org/10.1038/srep35685.

75. R. Santbergen, R.J.C. van Zolingen, The absorption factor of crystalline silicon PV cells: a numerical and experimental study, Sol. Energy Mater. Sol. Cells 92, 432-444, 2008. https://doi.org/10.1016/J.SOLMAT.2007.10.005.

76. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, F. De Angelis, Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells, Energy Environ. Sci. 2016. https://doi.org/10.1039/c5ee02925b.

77. N.K. Kumawat, A. Dey, A. Kumar, S.P. Gopinathan, K.L. Narasimhan, D. Kabra,Band gap tuning of CH 3 NH 3 Pb(Br 1e x Cl x) 3 hybrid perovskite for blueelectroluminescence, ACS Appl. Mater. Interfaces 7, 13119-13124, 2015. https://doi.org/10.1021/acsami.5b02159.

78. S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, Bandgap tuning of lead halide perovskites using a sequential deposition process, J. Mater.Chem. A. 2, 9221-9225, 2014. https://doi.org/10.1039/C4TA00435C.

79. A.M. Ganose, C.N. Savory, D.O. Scanlon, Beyondmethylammonium lead iodide:prospects for the emergent field of ns2 containing solar absorbers, Chem. Commun. 2017. https://doi.org/10.1039/c6cc06475b.

80. P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3and CH3NH3SnI3 perovskites for solar cell applications, Sci. Rep. 4, 4467, 2015. https://doi.org/10.1038/srep04467.

81. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Gratzel, F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedral tilting, Nano Lett. 14, 3608-3616, 2014. https://doi.org/10.1021/nl5012992.

82. T. Liu, Y. Zong, Y. Zhou, M. Yang, Z. Li, O.S. Game, K. Zhu, R. Zhu, Q. Gong, N.P. Padture, High-performance formamidinium-based perovskite solar cells viamicrostructure-mediated d-to-a phase transformation, Chem. Mater. 2017. https://doi.org/10.1021/acs.chemmater.7b00523.

83. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Gratzel, A vacuum flash-assisted solution process for high-efficiency large-areaperovskite solar cells, Science 353, 58-62, 2016. https://doi.org/10.1126/science.aaf8060.

84. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131, 6050-6051, 2009. https://doi.org/10.1021/ja809598r.

85. H.-S. Kim, C.-R.Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Gr€atzel, N.-G. Park, Lead iodideperovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2, 591, 2012. https://doi.org/10.1038/srep00591.

86. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskitesensitized solar cells, Nature 499 316-319, 2013. https://doi.org/10.1038/nature12340.

87. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybridsolar cells based on meso-superstructuredorganometal halide perovskites, Science, 80, 2012. https://doi.org/10.1126/science.1228604.

88. Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers,J.C. Wright, S. Jin, Solution growth of single crystal methylammonium lead halideperovskite nanostructures for optoelectronic and photovoltaic applications, J. Am. Chem. Soc. 137, 5810-5818, 2015. https://doi.org/10.1021/jacs.5b02651.

89. N. Yaghoobi, D. Saranin, A. L. Palma & A. Di Carlo, Perovskite solar cells. Solar Cells and Light Management, 163-228. 2020. doi:10.1016/ b978-0-08-102762-2.00005-7.

90. Q. Wali, F. J. Iftikhar, N. K. Elumalai, Y. Iqbal, S.Yousaf, S. Iqbal & R. Jose, Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020. doi:10.1016/j.cap.2020.03.007.

91. G.R.J. Artus, S. Jung, J. Zimmermann, H.-P.Gautschi, K. Marquardt, S. Seeger, Silicone nanofilaments and their application as superhydrophobic coatings, Adv. Mater. 20, 2758-2762, 2006.

92. S. Sahoo, S. Pradhan & S. Das, Superhydrophobic antireflective polymer coatings with improved solar cell efficiency. Superhydrophobic Polymer Coatings, 281–297, 2019. doi:10.1016/b978-0-12-816671-0.00013-8.

1 * Corresponding author: nayansays@gmail.com

Green Energy

Подняться наверх