Читать книгу Engineering Solutions for CO2 Conversion - Группа авторов - Страница 44

3.3 Oxygen Transport Membranes for CO2 Valorization

Оглавление

The application of strategies for capturing the CO2 from combustion processes is of great importance for effectively implementing CO2 conversion approaches and thus reducing the impact of industrial activity regarding CO2 emissions. Oxyfuel technology is one of the most considered options for conducting the implementation of this capture and sequestration of CO2 from exhaust gases, as well as for improving the efficiency of the aforementioned industrial processes [31–33]. The oxyfuel approach applied to combustion processes consists of burning the fuel with a pure or O2‐rich stream, thus obtaining mainly CO2 and H2O as products. Consequently, CO2 sequestration can be easily carried out with a simple separation step.

Nevertheless, oxyfuel technology is still far from being implemented in the most of targeted industrial processes. The main reason is related to the O2 supply, which is not economically feasible for those applications. Currently, almost all the O2 is produced by cryogenic distillation of air. This process, which is operated at very low temperatures and high pressures, requires from high energy and large production plants that avert its consideration for O2 on‐site production in small‐ and medium‐scale installations. An appealing solution for implementing an O2 supply system in such applications can be performed by considering oxygen transport membranes (OTMs). OTMs are ceramic membranes consisting of metallic oxides with the ability of diffusing O2− ions through the oxygen vacancies present in their crystal lattice. This is due to the mixed ionic–electronic conductivity (MIEC) of these materials at high temperatures (>600 °C), thus allowing O2 separation with 100% selectivity from a high pO2 feed stream (pressurized air) to a low pO2 sweep stream (vacuum or recirculated flue gas stream). Furthermore, waste heat streams generated in high‐temperature processes in several industries requiring from O2 supply for conducting combustions (e.g. cement plants, ceramic and glass production, and power plants) can be used for heating the OTM modules up to their operating temperature. This thermal integration can then result in a significant increase in plant efficiency and in a reduction in O2 production costs, which can be lowered up to 35% with respect to conventional cryogenic distillation [34].

Engineering Solutions for CO2 Conversion

Подняться наверх