Читать книгу Engineering Solutions for CO2 Conversion - Группа авторов - Страница 58
Power to methanol.
Оглавление1 (a) CO2 + 3H2 → CH3OH + H2O
2 (b) CO + 2H2 → CH3OH
3 (c) CO + H2O → CO2 + H2
Furthermore, products obtained from the Fischer–Tropsch reaction and methanol can also be recombined with syngas, CO, or H2 to obtain different products highly valued in the chemical industry. Some examples for different products are, for instance, ethanol to gasoline reaction by means of zeolites [116, 117]; hydroformylation reaction of olefins with syngas to aldehydes, and alcohols with cobalt and rhodium catalysts [118]; carbonylation reactions [119], where CO from the electrolysis can be employed; and methanol plus syngas or carbon monoxide, for the synthesis of value‐added chemicals [117].
The important role of electrolysis as a bridge between renewable energies, energy storage technology, and value‐added products (chemicals, fuels, etc.) is therefore obvious. The combination in the same step of both technologies, CO2 co‐electrolysis to produce syngas and the production of hydrocarbons by Fischer–Tropsch process, will give rise to a more efficient, compact, and environmental friendly technology. The eCOCO2 project [120] (sponsored by the EU commission via the H2020 program) based on CO2 conversion focuses on the development of co‐ionic electrochemical cells, which enable both: the electrolysis of water and the hydrocarbon synthesis in the same step. The CO2 converter consists of electrochemical cell constructed with a co‐ionic electrolyte that allows the injection of protons to the reaction cell, and the simultaneous extraction of oxygen ions. In addition, a multifunctional catalyst will be integrated in the electrochemical cell for the hydrocarbon generation. The final objective of this project is the production of more than 250 g of jet fuel per day.