Читать книгу Engineering Solutions for CO2 Conversion - Группа авторов - Страница 62
References
Оглавление1 1 IEA (2020). CO2 Emissions from Fuel Combustion: Overview. Paris: IEA. https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview.
2 2 Yu, X., Yang, J., Yan, J., and Tu, S. (2015). Membrane technologies for CO2 capture. In: Handbook of Clean Energy Systems (ed. J. Yan), 1–13. Wiley.
3 3 Remiro‐Buenamañana, S. and García, H. (2019). ChemCatChem 11 (1): 342–356.
4 4 Mulder, J. (2013). Basic Principles of Membrane Technology. Netherlands: Springer.
5 5 Mohanty, K. and Purkait, M.K. (2011). Membrane Technologies and Applications. CRC Press.
6 6 Paidar, M., Fateev, V., and Bouzek, K. (2016). Electrochim. Acta 209: 737–756.
7 7 Li, H., Caravella, A., and Xu, H.Y. (2016). J. Mater. Chem. A 4 (37): 14069–14094.
8 8 Amano, M., Nishimura, C., and Komaki, M. (1990). Effects of high concentration CO and CO2 on hydrogen permeation through the palladium membrane. Mater. Trans. JIM 31: 404–408.
9 9 O'Brien, C.P. and Lee, I.C. (2017). J. Phys. Chem. C 121 (31): 16864–16871.
10 10 Brunetti, A. and Fontananova, E. (2019). J. Nanosci. Nanotechnol. 19 (6): 3124–3134.
11 11 Pomilla, F.R., Brunetti, A., Marcì, G. et al. (2018). ACS Sustainable Chem. Eng. 6 (7): 8743–8753.
12 12 Mason, E.A. (1991). J. Membr. Sci. 60 (2): 125–145.
13 13 Mitchell, J.K. (1995). J. Membr. Sci. 100 (1): 11–16.
14 14 Koros, W.J. and Fleming, G.K. (1993). J. Membr. Sci. 83 (1): 1–80.
15 15 Wijmans, J.G. and Baker, R.W. (1995). J. Membr. Sci. 107 (1): 1–21.
16 16 Baker, R.W. (2012). Membrane Technology and Applications, 3e. Wiley.
17 17 Tanaka, K., Kita, H., Okano, M., and Okamoto, K.‐i. (1992). Polymer 33 (3): 585–592.
18 18 White, R.P. and Lipson, J.E.G. (2016). Macromolecules 49 (11): 3987–4007.
19 19 Han, Y. and Ho, W.S.W. (2018). Chin. J. Chem. Eng. 26 (11): 2238–2254.
20 20 Zhao, L., Weber, M., and Stolten, D. (2013). Energy Procedia 37: 1125–1134.
21 21 Yave, W. and Car, A. (2011). Chapter 6: Polymeric membranes for post‐combustion carbon dioxide (CO2) capture. In: Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (eds. A. Basile and S.P. Nunes), 160–183. Woodhead Publishing.
22 22 Ockwig, N.W. and Nenoff, T.M. (2007). Chem. Rev. 107 (10): 4078–4110.
23 23 Weigelt, F., Escorihuela, S., Descalzo, A. et al. (2019). Membranes 9 (4): 51.
24 24 Escorihuela, S., Tena, A., Shishatskiy, S. et al. (2018). Membranes 8 (1): 16.
25 25 He, X. (2016). Membranes for natural gas sweetening. In: Encyclopedia of Membranes (eds. E. Drioli and L. Giorno), 1266–1267. Berlin, Heidelberg: Springer Berlin Heidelberg.
26 26 Robeson, L.M. (1991). J. Membr. Sci. 62 (2): 165–185.
27 27 Robeson, L.M. (2008). J. Membr. Sci. 320 (1): 390–400.
28 28 Kim, S. and Lee, Y.M. (2013). Curr. Opin. Chem. Eng. 2 (2): 238–244.
29 29 Budd, P.M., Msayib, K.J., Tattershall, C.E. et al. (2005). J. Membr. Sci. 251 (1): 263–269.
30 30 Park, H.B., Jung, C.H., Lee, Y.M. et al. (2007). Science 318 (5848): 254.
31 31 Perrin, N., Dubettier, R., Lockwood, F. et al. (2015). Appl. Therm. Eng. 74: 75–82.
32 32 Lupion, M., Alvarez, I., Otero, P. et al. (2013). Ghgt‐11 37: 6179–6188.
33 33 Monne, J. and Prinet, C. (2013). Ghgt‐11 37: 6444–6457.
34 34 Smart, S., Lin, C.X.C., Ding, L. et al. (2010). Energy Environ. Sci. 3 (3): 268–278.
35 35 Takahashi, T., Esaka, T., and Iwahara, H. (1976). J. Solid State Chem. 16 (3–4): 317–323.
36 36 Cales, B. and Baumard, J.F. (1982). J. Mater. Sci. 17 (11): 3243–3248.
37 37 Cales, B. and Baumard, J.F. (1984). J. Electrochem. Soc. 131 (10): 2407–2413.
38 38 Bouwmeester, H. and Burggraaf, A. (1997). Chapter 14: Dense ceramic membranes for oxygen separation. In: CRC Handbook of Solid State Electrochemistry (eds. P.J. Gellings and H. Bouwmeester), 435–528. Boca Raton, FL: CRC Press.
39 39 Verkerk, M.J., Hammink, M.W.J., and Burggraaf, A.J. (1983). J. Electrochem. Soc. 130 (1): 70–78.
40 40 Kuklja, M.M., Kotomin, E.A., Merkle, R. et al. (2013). Phys. Chem. Chem. Phys. 15 (15): 5443–5471.
41 41 Bouwmeester, H.J.M., Kruidhof, H., and Burggraaf, A.J. (1994). Solid State Ionics 72, Part 2: 185–194.
42 42 Kharton, V.V., Tsipis, E.V., Yaremchenko, A.A. et al. (2003). J. Solid State Electrochem. 7 (8): 468–476.
43 43 Shaula, A.L., Kolotygin, V.A., Naumovich, E.N. et al. (2013). Oxygen ionic transport in Brownmillerite‐type Ca2Fe2O5‐delta and calcium ferrite‐based composite membranes. In: Oxide Materials for Electronic Engineering – Fabrication, Properties and Applications, vol. 200 (eds. S. Ubizskii, L. Vasylechko and Y. Zhydachevskii), 286–292. Trans Tech Publications Ltd.
44 44 Xue, J., Liao, Q., Chen, W. et al. (2015). J. Mater. Chem. A 3 (37): 19107–19114.
45 45 Bochkov, D.M., Kharton, V.V., Kovalevsky, A.V. et al. (1999). Solid State Ionics 120 (1): 281–288.
46 46 Baumann, S., Serra, J.M., Lobera, M.P. et al. (2011). J. Membr. Sci. 377 (1–2): 198–205.
47 47 Luo, H., Jiang, H., Klande, T. et al. (2012). Chem. Mater. 24 (11): 2148–2154.
48 48 Luo, H., Efimov, K., Jiang, H. et al. (2011). Angew. Chem. Int. Ed. 50 (3): 759–763.
49 49 Balaguer, M., Garcia‐Fayos, J., Solis, C., and Serra, J.M. (2013). Chem. Mater. 25 (24): 4986–4993.
50 50 Garcia‐Fayos, J., Balaguer, M., and Serra, J.M. (2015). ChemSusChem 8 (24): 4242–4249.
51 51 Gaudillere, C., Garcia‐Fayos, J., Balaguer, M., and Serra, J.M. (2014). ChemSusChem 7 (9): 2554–2561.
52 52 Engels, S., Beggel, F., Modigell, M., and Stadler, H. (2010). J. Membr. Sci. 359 (1–2): 93–101.
53 53 Stadler, H., Beggel, F., Habermehl, M. et al. (2011). Int. J. Greenhouse Gas Control 5 (1): 7–15.
54 54 Kelly, S.M., Kromer, B.R., Litwin, M.M., et al. (2013). Synthesis gas method and apparatus. US Patent 8,349,214, filed 08 July 2011 and issued 08 January 2012.
55 55 John Repasky, D.M., Armstrong, P., and Carolan, M. (2014). ITM technology for carbon capture on natural gas and hybrid power systems. In Workshop on Technology Pathways Forward for Carbon Capture & Storage on Natural Gas Power Systems, Washington DC (22 April 2014).
56 56 Miller, C.F., Chen, J., Carolan, M.F., and Foster, E.P. (2014). Catal. Today 228: 152–157.
57 57 Repasky, J.M., Waldron, W.E., and Miller, C.F. (2010). ITM syngas: ceramic membrane technology for lower cost conversion of natural gas. In 10th Topical Conference on Gas Utilization 2010 – Topical Conference at the 2010 AIChE Spring Meeting and 6th Global Congress on Process Safety, San Antonio, TX (21–25 March 2010). AIChE (pp. 48–59).
58 58 Anderson, L.L., Armstrong, P.A., Broekhuis, R.R. et al. (2016). Solid State Ionics 288: 331–337.
59 59 Rosen, L., Degenstein, N., Shah, M. et al. (2011). 10th International Conference on Greenhouse Gas Control Technologies, vol. 4 (eds. J. Gale, C. Hendriks and W. Turkenberg), 750–755, ISSN 1876‐6102.
60 60 Kromer, B.R., Litwin, M.M., and Kelly, S.M. (2014). Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream. US Patent 7,856,829. US20140183866 A1, filed 23 December 2013 and issued 27 September 2016.
61 61 Shah, M.M., Jamal, A., Dmevich, R.F., et al. (2012). Electrical power generation apparatus. US Patent 8,196,387, filed 17 November 2010 and issued 12 June 2012.
62 62 Kneer, R., Toporov, D., Förster, M. et al. (2010). Energy Environ. Sci. 3 (2): 198–207.
63 63 Gutiérrez‐Guerra, N., Valverde, J.L., Romero, A. et al. (2017). Electrochem. Commun. 81: 128–131.
64 64 Pfaff, E.M., Kaletsch, A., and Broeckmann, C. (2012). Chem. Eng. Technol. 35 (3): 455–463.
65 65 Middelkoop, V. and Michielsen, B. (2015). Oxy fuel combustion power production using high temperature O2 membranes. In: Process Intensification for Sustainable Energy Conversion (eds. F. Gallucci and M.V.S. Annaland), 321–385. Wiley.
66 66 Gröger, O., Gasteiger, H.A., and Suchsland, J.‐P. (2015). J. Electrochem. Soc. 162 (14): A2605–A2622.
67 67 Büchi, F.N., Hofer, M., Peter, C. et al. (2014). RSC Adv. 4 (99): 56139–56146.
68 68 Lewandowska‐Bernat, A. and Desideri, U. (2017). Energy Procedia 105: 4569–4574.
69 69 Götz, M., Lefebvre, J., Mörs, F. et al. (2016). Renewable Energy 85: 1371–1390.
70 70 Kluiters, S.C.A. (2004). Status Review on Membrane Systems for Hydrogen Separation. Intermediate Report EU project MIGREYD NNE5‐2001. p. 670.
71 71 Al‐Mufachi, N.A., Rees, N.V., and Steinberger‐Wilkens, R. (2015). Renewable Sustainable Energy Rev. 47: 540–551.
72 72 Escolástico, S., Schroeder, M., and Serra, J.M. (2014). J. Mater. Chem. A 2 (18): 6616–6630.
73 73 Escolástico, S., Solís, C., Scherb, T. et al. (2013). J. Membr. Sci. 444: 276–284.
74 74 Haugsrud, R. and Kjølseth, C. (2008). J. Phys. Chem. Solids 69 (7): 1758–1765.
75 75 Haugsrud, R. and Norby, T. (2006). Nat. Mater. 5 (3): 193–196.
76 76 Magrasó, A. and Haugsrud, R. (2014). J. Mater. Chem. A 2 (32): 12630–12641.
77 77 Serra, J.M. (2019). Nat. Energy 4 (3): 178–179.
78 78 Meulenberg, W.A., Ivanova, M.E., Serra, J.M., and Roitsch, S. (2011). Chapter 17: Proton‐conducting ceramic membranes for solid oxide fuel cells and hydrogen (H2) processing. In: Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (eds. A. Basile and S.P. Nunes), 541–567. Woodhead Publishing.
79 79 Bareiß, K., de la Rua, C., Möckl, M., and Hamacher, T. (2019). Appl. Energy 237: 862–872.
80 80 Kreuer, K.D. (2003). Annu. Rev. Mater. Res. 33 (1): 333–359.
81 81 de Grotthuss, C. (1806). Philos. Mag. 25: 330–339.
82 82 Marx, D. (2006). ChemPhysChem 7 (9): 1848–1870.
83 83 Kreuer, K.‐D. (1996). Chem. Mater. 8 (3): 610–641.
84 84 Ricote, S., Bonanos, N., Manerbino, A., and Coors, W.G. (2012). Int. J. Hydrogen Energy 37 (9): 7954–7961.
85 85 Ricote, S., Bonanos, N., Marco de Lucas, M.C., and Caboche, G. (2009). J. Power Sources 193 (1): 189–193.
86 86 Yang, L., Wang, S., Blinn, K. et al. (2009). Science 326 (5949): 126.
87 87 Choi, S., Kucharczyk, C.J., Liang, Y. et al. (2018). Nat. Energy 3 (3): 202–210.
88 88 Escolástico, S., Somacescu, S., and Serra, J.M. (2014). Chem. Mater. 26 (2): 982–992.
89 89 Escolástico, S., Somacescu, S., and Serra, J.M. (2015). J. Mater. Chem. A 3 (2): 719–731.
90 90 Escolástico, S., Solis, C., Kjolseth, C., and Serra, J.M. (2014). Energy Environ. Sci. 7 (11): 3736–3746.
91 91 Ivanova, M.E., Escolástico, S., Balaguer, M. et al. (2016). Sci. Rep. 6: 34773.
92 92 Mortalò, C., Rebollo, E., Escolástico, S. et al. (2018). J. Membr. Sci. 564: 123–132.
93 93 Rebollo, E., Mortalo, C., Escolástico, S. et al. (2015). Energy Environ. Sci. 8 (12): 3675–3686.
94 94 Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A. (2016). Catal. Rev. 58 (1): 1–35.
95 95 Chang, H.‐F., Pai, W.‐J., Chen, Y.‐J., and Lin, W.‐H. (2010). Int. J. Hydrogen Energy 35 (23): 12986–12992.
96 96 Iulianelli, A., Ribeirinha, P., Mendes, A., and Basile, A. (2014). Renewable Sustainable Energy Rev. 29: 355–368.
97 97 Li, J., Yoon, H., Oh, T.‐K., and Wachsman, E.D. (2009). Appl. Catal., B 92 (3–4): 234–239.
98 98 Li, J., Yoon, H., Oh, T.‐K., and Wachsman, E.D. (2012). Int. J. Hydrogen Energy 37 (21): 16006–16012.
99 99 Liu, Z., Li, L., and Iglesia, E. Catal. Lett. 82 (3): 175–180.
100 100 Xue, J., Chen, Y., Wei, Y. et al. (2016). ACS Catal. 6 (4): 2448–2451.
101 101 Wender, I. (1996). Fuel Process. Technol. 48 (3): 189–297.
102 102 Graves, C., Ebbesen, S.D., Mogensen, M., and Lackner, K.S. (2011). Renewable Sustainable Energy Rev. 15 (1): 1–23.
103 103 Millet, P. and Grigoriev, S. (2013). Chapter 2: Water electrolysis technologies. In: Renewable Hydrogen Technologies (eds. L.M. Gandía, G. Arzamendi and P.M. Diéguez), 19–41. Amsterdam: Elsevier.
104 104 Laguna‐Bercero, M.A. (2012). J. Power Sources 203: 4–16.
105 105 Sakai, T., Arakawa, K., Ogushi, M. et al. (2015). J. Solid State Electrochem. 19 (6): 1793–1798.
106 106 Vøllestad, E., Strandbakke, R., Tarach, M. et al. (2019). Nat. Mater. 18 (7): 752–759.
107 107 Kortlever, R., Shen, J., Schouten, K.J.P. et al. (2015). J. Phys. Chem. Lett. 6 (20): 4073–4082.
108 108 Minh, N.Q. and Takahashi, T. (1995). Science and Technology of Ceramic Fuel Cells. Elsevier Science.
109 109 Ruiz‐Trejo, E. and Irvine, J.T.S. (2013). Solid State Ionics 252: 157–164.
110 110 Ruiz‐Trejo, E. and Irvine, J.T.S. (2012). Solid State Ionics 216: 36–40.
111 111 Bausá, N., Escolástico, S., and Serra, J.M. (2019). J. CO2 Util. 34: 231–238.
112 112 Speight, J.G. (2019). Chapter 3: Unconventional gas. In: Natural Gas, 2e (ed. J.G. Speight), 59–98. Boston, MA: Gulf Professional Publishing.
113 113 Rostrup‐Nielsen, J.R. (2000). Catal. Today 63 (2): 159–164.
114 114 Dalai, A.K. and Davis, B.H. (2008). Appl. Catal., A 348 (1): 1–15.
115 115 Wang, L., Chen, M., Küngas, R. et al. (2019). Renewable Sustainable Energy Rev. 110: 174–187.
116 116 Choi, M., Na, K., Kim, J. et al. (2009). Nature 461: 246.
117 117 Stöcker, M. (1999). Microporous Mesoporous Mater. 29 (1–2): 3–48.
118 118 Franke, R., Selent, D., and Börner, A. (2012). Chem. Rev. 112 (11): 5675–5732.
119 119 Beller, M. (2006). Catalytic Carbonylation Reactions. Springer.
120 120 Haworth, P.F., Smart, S., Serra, J.M., and Diniz da Costa, J.C. (2012). Phys. Chem. Chem. Phys. 14 (25): 9104–9111.
121 121 Kyriakou, V., Garagounis, I., Vourros, A. et al. (2016). Appl. Catal., B 186: 1–9.
122 122 Malerød‐Fjeld, H., Clark, D., Yuste‐Tirados, I. et al. (2017). Nat. Energy 2 (12): 923–931.
123 123 Xu, Y., Bao, X., and Lin, L. (2003). J. Catal. 216 (1): 386–395.
124 124 Tempelman, C.H.L. and Hensen, E.J.M. (2015). Appl. Catal., B 176–177: 731–739.
125 125 Morejudo, S.H., Zanón, R., Escolástico, S. et al. (2016). Science 353 (6299): 563.