Читать книгу The Peripheral T-Cell Lymphomas - Группа авторов - Страница 45

References

Оглавление

1 1 Morris, S.W., Kirstein, M.N., Valentine, M.B. et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non‐Hodgkin's lymphoma. Science 263 (5151): 1281–1284.

2 2 Parrilla Castellar, E.R., Jaffe, E.S., Said, J.W. et al. (2014). ALK‐negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124 (9): 1473–1480.

3 3 Abate, F., da Silva‐Almeida, A.C., Zairs, S. et al. (2017). Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T‐cell lymphomas. Proc Natl Acad Sci U S A 114 (4): 764–769.

4 4 Yoo, H.Y., Sung, M.K., Lee, S.H. et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46 (4): 371–375.

5 5 Vallois, D., Dupuy, A., Lemonnier, F. et al. (2018). RNA fusions involving CD28 are rare in peripheral T‐cell lymphomas and concentrate mainly in those derived from follicular helper T cells. Haematologica 103 (8): e360–e363.

6 6 Heavican, T.B., Bouska, A., Yu, J. et al. (2019). Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T‐cell lymphoma. Blood 133 (15): 1664–1676.

7 7 Stephens, P.J., Greenman, C.D., Fu, B. et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144 (1): 27.

8 8 Boddicker, R.L., Razidlo, G.L., Dasari, S. et al. (2016). Integrated mate‐pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T‐cell lymphoma. Blood 128 (9): 1234–1245.

9 9 Kataoka, K., Shiraishi, Y., Takeda, Y. et al. (2016). Aberrant PD‐L1 expression through 3’‐UTR disruption in multiple cancers. Nature 534 (7607): 402–406.

10 10 Kataoka, K., Miyoshi, H., Sakata, S. et al. (2019). Frequent structural variations involving programmed death ligands in Epstein‐Barr virus‐associated lymphomas. Leukemia 33 (7): 1687–1699.

11 11 Liu, C., Iqbal, J., Teruya‐Feldstein, J. et al. (2013). MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood 122 (12): 2083–2092.

12 12 Valleron, W., Ysebaert, L., Berquet, L. et al. (2012). Small nucleolar RNA expression profiling identifies potential prognostic markers in peripheral T‐cell lymphoma. Blood 120 (19): 3997–4005.

13 13 Wang, L., Ni, X., Covington, K.R. et al. (2015). Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet 47 (12): 1426–1434.

14 14 Sakata‐Yanagimoto, M., Enami, T., Yoshida, K. et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.

15 15 Odejide, O., Weigert, O., Lane, A.A. et al. (2014). A targeted mutational landscape of angioimmunoblastic T‐cell lymphoma. Blood 123 (9): 1293–1296.

16 16 Lemonnier, F., Couronné, L., Parrens, M. et al. (2012). Recurrent TET2 mutations in peripheral T‐cell lymphomas correlate with TFH‐like features and adverse clinical parameters. Blood 120 (7): 1466–1469.

17 17 Couronné, L., Bastard, C., and Bernard, O.A. (2012). TET2 and DNMT3A mutations in human T‐cell lymphoma. N Engl J Med 366 (1): 95–96.

18 18 Cairns, R.A., Iqbal, J., Lemonnier, F. et al. (2012). IDH2 mutations are frequent in angioimmunoblastic T‐cell lymphoma. Blood 119 (8): 1901–1903.

19 19 Solary, E., Bernard, O.A., Tefferi, A. et al. (2014). The Ten‐Eleven Translocation‐2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 28 (3): 485–496.

20 20 Kim, S.J., Zhao, H., Hardikar, S. et al. (2013). A DNMT3A mutation common in AML exhibits dominant‐negative effects in murine ES cells. Blood 122 (25): 4086–4089.

21 21 Cairns, R.A. and Mak, T.W. (2013). Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3 (7): 730–741.

22 22 Lemonnier, F., Poullot, E., Dupuy, A. et al. (2018). Loss of 5‐hydroxymethylcytosine is a frequent event in peripheral T‐cell lymphomas. Haematologica 103 (3): e115–e118.

23 23 Roberti, A., Dobay, M.P., Bisig, B. et al. (2016). Type II enteropathy‐associated T‐cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun 7: 12602.

24 24 McKinney, M., Moffitt, A.B., Gaulard, P. et al. (2017). The genetic basis of hepatosplenic T‐cell lymphoma. Cancer Discov 7 (4): 369–379.

25 25 Jiang, L., Gu, Z.H., Yan, Z.X. et al. (2015). Exome sequencing identifies somatic mutations of DDX3X in natural killer/T‐cell lymphoma. Nat Genet 47 (9): 1061–1066.

26 26 Li, Z., Zhang, X., Xue, W. et al. (2019). Recurrent GNAQ mutation encoding T96S in natural killer/T cell lymphoma. Nat Commun 10 (1): 4209–4209.

27 27 Ji, M.M., Huang, Y.H., Huang, J.Y. et al. (2018). Histone modifier gene mutations in peripheral T‐cell lymphoma not otherwise specified. Haematologica 103 (4): 679–687.

28 28 Laurent, C., Nicolae, A., Laurent, C. et al. (2020). Gene alterations in epigenetic modifiers and JAK‐STAT signaling are frequent in breast implant–associated ALCL. Blood 135 (5): 360–370.

29 29 Genovese, G., Kähler, A.K., Handsaker, R.E. et al. (2014). Clonal hematopoiesis and blood‐cancer risk inferred from blood DNA sequence. N Engl J Med 371 (26): 2477–2487.

30 30 Jaiswal, S., Fontanillas, P., Flannick, J. et al. (2014). Age‐related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371 (26): 2488–2498.

31 31 Quivoron, C., Couronné, L., Della Valle, V. et al. (2011). TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20 (1): 25–38.

32 32 Yang, L., Rau, R., and Goodell, M.A. (2015). DNMT3A in haematological malignancies. Nat Rev Cancer 15 (3): 152–165.

33 33 Nel, A.E. (2002). T‐cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T‐cell antigen receptor synapse. J Allergy Clin Immunol 109 (5): 758–770.

34 34 Streubel, B., Vinatzer, U., Willheim, M. et al. (2006). Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T‐cell lymphoma. Leukemia 20 (2): 313–318.

35 35 Pechloff, K., Holch, J., Ferch, U. et al. (2010). The fusion kinase ITK‐SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med 207 (5): 1031–1044.

36 36 Feldman, A.L., Sun, D.X., Law, M.E. et al. (2008). Overexpression of Syk tyrosine kinase in peripheral T‐cell lymphomas. Leukemia 22 (6): 1139–1143.

37 37 Palomero, T., Couronné, L., Khiabanian, H. et al. (2014). Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46 (2): 166–170.

38 38 Fujisawa, M., Sakata‐Yanagimoto, M., Nishizawa, S. et al. (2018). Activation of RHOA‐VAV1 signaling in angioimmunoblastic T‐cell lymphoma. Leukemia 32 (3): 694–702.

39 39 Cortes, J.R., Ambesi‐Impiombato, A., Couronné, L. et al. (2018). RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell 33 (2): 259–273.e7.

40 40 Ng, S.Y., Brown, L., Stevenson, K. et al. (2018). RhoA G17V is sufficient to induce autoimmunity and promotes T cell lymphomagenesis in mice. Blood 132 (9): 935–947.

41 41 Vallois, D., Dobay, M.P.D., Morin, R.D. et al. (2016). Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T‐cell‐derived lymphomas. Blood 128 (11): 1490–1502.

42 42 Vaqué, J.P., Gómez‐López, G., Monsálvez, V. et al. (2014). PLCG1 mutations in cutaneous T‐cell lymphomas. Blood 123 (13): 2034–2043.

43 43 Luchtel, R.A., Dasari, S., Oishi, N. et al. (2018). Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132 (13): 1386–1398.

44 44 Luchtel, R.A., Zimmermann, M.T., Hu, G. et al. (2019). Recurrent MSCE116K mutations in ALK‐negative anaplastic large cell lymphoma. Blood 133 (26): 2776–2789.

45 45 Cristofoletti, C., Picchio, M.C., Lazzeri, C. et al. (2013). Comprehensive analysis of PTEN status in Sézary syndrome. Blood 122 (20): 3511–3520.

46 46 Kataoka, K., Nagata, Y., Kitanaka, A. et al. (2015). Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 47 (11): 1304–1315.

47 47 Wartewig, T., Kurgyis, Z., Keppler, S. et al. (2017). PD‐1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552 (7683): 121–125.

48 48 Seif, F., Khoshmirsafa, M., Aazami, H. et al. (2017). The role of JAK‐STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 15 (1): 23.

49 49 Werner, M.T., Zhao, C., Zhang, Q., and Wasik, M.A. (2017). Nucleophosmin‐anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood 129 (7): 823–831.

50 50 Crescenzo, R., Abate, F., Lasorsa, E. et al. (2015). Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27 (4): 516–532.

51 51 Koskela, H.L.M., Eldfors, S., Ellonen, P. et al. (2012). Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 366 (20): 1905–1913.

52 52 Bouchekioua, A., Scourzic, L., de Wever, O. et al. (2014). JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal‐type natural killer cell lymphoma. Leukemia 28 (2): 338–348.

53 53 Watatani, Y., Sato, Y., Miyoshi, H. et al. (2019). Molecular heterogeneity in peripheral T‐cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling. Leukemia 28 (2): 338–348.

54 54 Moffitt, A.B., Ondrejka, S.L., McKinney, M. et al. (2017). Enteropathy‐associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med 214 (5): 1371–1386.

55 55 Laharanne, E., Chevret, E., Idrissi, Y. et al. (2010). CDKN2A–CDKN2B deletion defines an aggressive subset of cutaneous T‐cell lymphoma. Mod Pathol 23 (4): 547–558.

56 56 Yoshida, N., Karube, K., Utsunomiya, A. et al. (2014). Molecular characterization of chronic‐type T‐cell leukemia/lymphoma. Cancer Res 74 (21): 6129–6138.

57 57 Pedersen, M.B., Hamilton‐Dutoit, S.J., Bendix, K. et al. (2017). DUSP22 and TP63 rearrangements predict outcome of ALK‐negative anaplastic large cell lymphoma: a Danish cohort study. Blood 130 (4): 554–557.

58 58 Challa‐Malladi, M., Lieu, Y.K., Califano, O. et al. (2011). Combined genetic inactivation of β2‐microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20 (6): 728–740.

59 59 Kwong, Y.L., Chan, T.S.Y., Tan, D. et al. (2017). PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T‐cell lymphoma failing l‐asparaginase. Blood 129 (17): 2437–2442.

60 60 Ungewickell, A., Bhaduri, A., Rios, E. et al. (2015). Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2. Nat Genet 47 (9): 1056–1060.

61 61 de Leval, L., Rickman, D.S., Thielen, C. et al. (2007). The gene expression profile of nodal peripheral T‐cell lymphoma demonstrates a molecular link between angioimmunoblastic T‐cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109 (11): 4952–4963.

62 62 Crotty, S. (2014). T follicular helper cell differentiation, function, and roles in disease. Immunity 41 (4): 529–542.

63 63 Gaulard, P. and de Leval, L. (2014). The microenvironment in T‐cell lymphomas: emerging themes. Semin Cancer Biol 24: 49–60.

64 64 Foss, H., Anagnostopoulos, I., Herbst, H. et al. (1995). Patterns of cytokine gene expression in peripheral T‐cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood 85 (10): 2862–2869.

65 65 Papadi, B., Polski, J.M., Clarkson, D.R., and Liu‐Dumlao, T.O. (2012). Atypical angioimmunoblastic T‐cell lymphomas masquerading as systemic polyclonal B‐immunoblastic proliferation. Virchows Arch 461 (3): 323–331.

66 66 Ohshima, K., Haraoka, S., Suzumiya, J. et al. (2000). Cytoplasmic cytokines in lymphoproliferative disorders: multiple cytokine production in angioimmunoblastic lymphadenopathy with dysproteinemia. Leuk Lymphoma 38 (5–6): 541–545.

67 67 Niino, D., Komohara, Y., Murayama, T. et al. (2010). Ratio of M2 macrophage expression is closely associated with poor prognosis for Angioimmunoblastic T‐cell lymphoma (AITL). Pathol Int 60 (4): 278–283.

68 68 Tripodo, C., Gri, G., Piccaluga, P.P. et al. (2010). Mast cells and Th17 cells contribute to the lymphoma‐associated pro‐inflammatory microenvironment of angioimmunoblastic T‐cell lymphoma. Am J Pathol 177 (2): 792–802.

69 69 Iqbal, J., Weisenburger, D.D., Greiner, T.C. et al. (2010). Molecular signatures to improve diagnosis in peripheral T‐cell lymphoma and prognostication in angioimmunoblastic T‐cell lymphoma. Blood 115 (5): 1026–1036.

70 70 Iqbal, J., Wright, G., Wang, C. et al. (2014). Gene expression signatures delineate biological and prognostic subgroups in peripheral T‐cell lymphoma. Blood 123 (19): 2915–2923.

71 71 Schwartz, F.H., Cai, Q., Fellmann, E. et al. (2017). TET2 mutations in B cells of patients affected by angioimmunoblastic T‐cell lymphoma. J Pathol 242 (2): 129–133.

72 72 Nguyen, T.B., Sakata‐Yanagimoto, M., Asabe, Y. et al. (2017). Identification of cell‐type‐specific mutations in nodal T‐cell lymphomas. Blood Cancer J 7 (1): e516.

73 73 Bräuninger, A., Spieker, T., Willenbrock, K. et al. (2001). Survival and clonal expansion of mutating “forbidden” (immunoglobulin receptor‐deficient) epstein‐barr virus‐infected b cells in angioimmunoblastic t cell lymphoma. J Exp Med 194 (7): 927–940.

74 74 Cheminant, M., Bruneau, J., Kosmider, O. et al. (2015). Efficacy of 5‐Azacytidine in a TET2 mutated angioimmunoblastic T cell lymphoma. Br J Haematol 168 (6): 913–916.

75 75 Tiacci, E., Venanzi, A., Ascani, S. et al. (2018). High‐risk clonal hematopoiesis as the origin of AITL and NPM1‐mutated AML. N Engl J Med 379 (10): 981–984.

76 76 Lemonnier, F., Dupuis, J., Sujobert, P. et al. (2018). Treatment with 5‐azacytidine induces a sustained response in patients with angioimmunoblastic T‐cell lymphoma. Blood 132 (21): 2305–2309.

77 77 Lamant, L., McCarthy, K., d’Amore, E. et al. (2011). Prognostic impact of morphologic and phenotypic features of childhood ALK‐positive anaplastic large‐cell lymphoma: results of the ALCL99 study. J Clin Oncol 29 (35): 4669–4676.

78 78 Geissinger, E., Odenwald, T., Lee, S.S. et al. (2004). Nodal peripheral T‐cell lymphomas and, in particular, their lymphoepithelioid (Lennert's) variant are often derived from CD8(+) cytotoxic T‐cells. Virchows Arch 445 (4): 334–343.

79 79 Patsouris, E., Engelhard, M., Zwingers, T., and Lennert, K. (1993). Lymphoepithelioid cell lymphoma (Lennert's lymphoma): clinical features derived from analysis of 108 cases. Br J Haematol 84 (2): 346–348.

80 80 Ballester, B., Ramuz, O., Gisselbrecht, C. et al. (2006). Gene expression profiling identifies molecular subgroups among nodal peripheral T‐cell lymphomas. Oncogene 25 (10): 1560–1570.

81 81 Cuadros, M., Dave, S.S., Jaffe, E.S. et al. (2007). Identification of a proliferation signature related to survival in nodal peripheral T‐cell lymphomas. J Clin Oncol 25 (22): 3321–3329.

82 82 Aggarwal, D., Srivastava, G., Gupta, R. et al. (2012). Angiogenesis in non‐Hodgkin's lymphoma: an intercategory comparison of microvessel density. ISRN Hematol 2012: 943089.

83 83 Rabenhorst, A., Schlaak, M., Heukamp, L.C. et al. (2012). Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 120 (10): 2042–2054.

84 84 Zhang, W., Wang, L., Zhou, D. et al. (2011). Expression of tumor‐associated macrophages and vascular endothelial growth factor correlates with poor prognosis of peripheral T‐cell lymphoma, not otherwise specified. Leuk Lymphoma 52 (1): 46–52.

85 85 Rafii, S., Lyden, D., Benezra, R. et al. (2002). Vascular and haematopoietic stem cells: novel targets for anti‐angiogenesis therapy? Nat Rev Cancer 2 (11): 826–835.

86 86 Tabbò, F., Ponzoni, M., Rabadan, R. et al. (2013). Beyond NPM‐anaplastic lymphoma kinase driven lymphomagenesis: alternative drivers in anaplastic large cell lymphoma. Curr Opin Hematol 20 (4): 374–381.

87 87 Salven, P., Orpana, A., Teerenhovi, L., and Joensuu, H. (2000). Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non‐Hodgkin lymphoma: a single‐institution study of 200 patients. Blood 96 (12): 3712–3718.

88 88 Ganjoo, K., Hong, F., Horning, S.J. et al. (2014). Bevacizumab and cyclosphosphamide, doxorubicin, vincristine and prednisone in combination for patients with peripheral T‐cell or natural killer cell neoplasms: an Eastern Cooperative Oncology Group study (E2404). Leuk Lymphoma 55 (4): 768–772.

89 89 Roufosse, F., Garaud, S., and de Leval, L. (2012). Lymphoproliferative disorders associated with hypereosinophilia. Semin Hematol 49 (2): 138–148.

90 90 Kleinhans, M., Tun‐Kyi, A., Gilliet, M. et al. (2003). Functional expression of the eotaxin receptor CCR3 in CD30+ cutaneous T‐cell lymphoma. Blood 101 (4): 1487–1493.

91 91 Lacy, P. and Moqbel, R. (2000). Eosinophil cytokines. Chem Immunol 76: 134–155.

92 92 Poiesz, B.J., Ruscetti, F.W., Gazdar, A.F. et al. (1980). Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T‐cell lymphoma. Proc Natl Acad Sci U S A 77 (12): 7415.

93 93 Matsuoka, M. (2003). Human T‐cell leukemia virus type I and adult T‐cell leukemia. Oncogene 22 (33): 5131–5140.

94 94 Bangham, C.R.M. (2018). Cell leukemia virus type 1: persistence and pathogenesis. Annu Rev Immunol 36: 43–71.

95 95 Bangham, C.R.M. and Ratner, L. (2015). How does HTLV‐1 cause adult T‐cell leukaemia/lymphoma (ATL)? Curr Opin Virol 14: 93–100.

96 96 Melamed, A., Laydon, D.J., Gillet, N.A. et al. (2013). Genome‐wide determinants of proviral targeting, clonal abundance and expression in natural HTLV‐1 infection. PLOS Pathogens 9 (3): e1003271.

97 97 Watanabe, T. (2017). Adult T‐cell leukemia: molecular basis for clonal expansion and transformation of HTLV‐1‐infected T cells. Blood 129 (9): 1071–1081.

98 98 Tabiasco, J., Vercellone, A., Meggetto, F. et al. (2003). Acquisition of viral receptor by NK cells through immunological synapse. J Immunol 170 (12): 5993.

99 99 Lee, J.H., Choi, J., Ahn, Y.O. et al. (2018). CD21‐independent Epstein‐Barr virus entry into NK cells. Cell Immunol 327: 21–25.

100 100 Morales‐Sánchez, A. and Fuentes‐Pananá, E.M. (2014). Human viruses and cancer. Viruses 6 (10): 4047–4079.

101 101 Li, Z., Xia, Y., Feng, L.N. et al. (2016). Genetic risk of extranodal natural killer T‐cell lymphoma: a genome‐wide association study. Lancet Oncol 17 (9): 1240–1247.

102 102 Lin, G.W., Xu, C., Chen, K. et al. (2020). Genetic risk of extranodal natural killer T‐cell lymphoma: a genome‐wide association study in multiple populations. Lancet Oncol 21 (2): 306–316.

103 103 Di Sabatino, A., Biagi, F., Gobbi, P.G., and Corazza, G.R. (2012). How I treat enteropathy‐associated T‐cell lymphoma. Blood 119 (11): 2458–2468.

104 104 de Leval, L. (2019). Breast implant‐associated anaplastic large cell lymphoma and other rare T‐cell lymphomas. Hematol Oncol 37 (S1): 24–29.

105 105 Laurent, C., Haioun, C., Brousset, P., and Gaulard, P. (2018). New insights into breast implant‐associated anaplastic large cell lymphoma. Curr Opin Oncol 30 (5): 292–300.

106 106 McGirt, L.Y., Jia, P., Baerenwald, D.A. et al. (2015). Whole‐genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 126 (4): 508–519.

107 107 Inoue, S., Li, W.Y., Tseng, A. et al. (2016). Mutant IDH1 downregulates ATM and alters DNA repair and sensitivity to DNA damage independent of TET2. Cancer Cell 30 (2): 337–348.

108 108 Sulkowski, P.L., Corso, C.D., Robinson, N.D. et al. (2017). 2‐Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 9: 375, eaal2463.

109 109 Cimmino, L., Dawlaty, M.M., Ndiaye‐Lobry, D. et al. (2015). TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol 16 (6): 653–662.

110 110 Mahfoudhi, E., Talhaoui, I., Cabagnols, X. et al. (2016). TET2‐mediated 5‐hydroxymethylcytosine induces genetic instability and mutagenesis. DNA Repair (Amst) 43: 78–88.

111 111 Gayden, T., Sepulveda, F.E., Khuong‐Quang, D.A. et al. (2018). Germline HAVCR2 mutations altering TIM‐3 characterize subcutaneous panniculitis‐like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome. Nat Genet 50 (12): 1650.

112 112 Swerdlow, S.H., Campo, E., Pileri, S.A. et al. (2016). The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127 (20): 2375–2390.

113 113 Wen, H., Ma, H., Cai, Q. et al. (2018). Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med 24 (2): 154–164.

114 114 Küçük, C., Jiang, B., Hu, X. et al. (2015). Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ‐T or NK cells. Nat Commun 6: 6025.

115 115 Huang, Y., de Reyniès, A., de Leval, L. et al. (2010). Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T‐cell lymphoma, nasal type. Blood 115 (6): 1226–1237.

116 116 Travert, M., Huang, Y., de Leval, L. et al. (2012). Molecular features of hepatosplenic T‐cell lymphoma unravels potential novel therapeutic targets. Blood 119 (24): 5795–5806.

117 117 Dobay, M.P., Lemonnier, F., Missiaglia, E. et al. (2017). Integrative clinicopathological and molecular analyses of angioimmunoblastic T‐cell lymphoma and other nodal lymphomas of follicular helper T‐cell origin. Haematologica 102 (4): e148–e151.

118 118 Lemonnier, F. and Mak, T.W. (2017). Angioimmunoblastic T‐cell lymphoma: more than a disease of T follicular helper cells. J Pathol 242 (4): 387–390.

119 119 Malcolm, T.I.M., Villarese, P., Fairbairn, C.J. et al. (2016). Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun 7 (1): 1–12.

120 120 Karube, K., Ohshima, K., Tsuchiya, T. et al. (2004). Expression of FoxP3, a key molecule in CD4+CD25+ regulatory T cells, in adult T‐cell leukaemia/lymphoma cells. Br J Haematol 126 (1): 81–84.

121 121 Satou, Y., Yasunaga, J., Zhao, T. et al. (2011). HTLV‐1 bZIP factor induces T‐cell lymphoma and systemic inflammation in vivo. PLOS Pathog 7 (2): e1001274.

122 122 de Leval, L. and Gaulard, P. (2011). Pathology and biology of peripheral T‐cell lymphomas. Histopathology 58 (1): 49–68.

The Peripheral T-Cell Lymphomas

Подняться наверх