Читать книгу Biological Mechanisms of Tooth Movement - Группа авторов - Страница 51
References
Оглавление1 Barczyk, M., Bolstad, A. I. and Gullberg, D. (2013) Role of integrins in the periodontal ligament: organizers and facilitators. Periodontology 2000 63(1), 29–47. doi:10.1111/prd.12027.
2 Bergomi, M., Cugnoni, J., Botsis, J. et al. (2010) The role of the fluid phase in the viscous response of bovine periodontal ligament. Journal of Biomechanics 43(6), 1146–1152. doi:10.1016/j.jbiomech.2009.12.020.
3 Binderman, I., Zor, U., Kaye, A. M. et al. (1988) The transduction of mechanical force into biochemical events in bone cells may involve activation of phospholipase A2. Calcified Tissue International 42(4), 261–266. doi:10.1007/bf02553753.
4 Burger, E. H. and Klein‐Nulend, J. (1999) Mechanotransduction in bone – role of the lacuno‐canalicular network. The FASEB Journal 13(Suppl.), S101–112.
5 Burridge, K. and Chrzanowska‐Wodnicka, M. (1996) Focal adhesions, contractility and signaling. Annual Review of Cell and Developmental Biology 12, 463–518. doi:10.1146/annurev.cellbio.12.1.463.
6 Burstone, C. J. (1962) The biomechanics of tooth movement, in Vistas in Orthodontics (eds B. S. Kraus and R. A. Riedel). Lee & Febiger, Philadelphia, PA, pp. 197–213.
7 Chen, X., Li, N., LeleYang, Liu, J. et al. (2014) Expression of collagen I, collagen III and MMP‐1 on the tension side of distracted tooth using periodontal ligament distraction osteogenesis in beagle dogs. Archives of Oral Biology 59(11), 1217–1225. doi:10.1016/j.archoralbio.2014.07.011.
8 Chiquet, M., Renedo, A. S., Huber, F. and Flück, M. (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology 22(1), 73–80. doi:10.1016/s0945‐053x(03)00004‐0.
9 Chiquet, M., Tunç‐Civelek, V. and Sarasa‐Renedo, A. (2007) Gene regulation by mechanotransduction in fibroblasts. Applied Physiology, Nutrition and Metabolism 32(5), 967–973. doi:10.1139/h07‐053.
10 Cobo, T., Viloria, C. G., Solares, L. et al. (2016) Role of periostin in adhesion and migration of bone remodeling cells. PLoS One 11(1), e0147837. doi:10.1371/journal.pone.0147837.
11 Davidovitch, Z. (1991) Tooth movement. Critical Reviews in Oral Biology and Medicine 2, 411–450.
12 Dean R. (2017) The periodontal ligament: development, anatomy and function. Oral Health and Dental Management 16(6), 1–7.
13 Duong, L. T., Lakkakorpi, P., Nakamura, I. and Rodan, G. A. (2000) Integrins and signaling in osteoclast function. Matrix Biology 19(2), 97–105. doi:10.1016/s0945‐053x(00)00051‐2.
14 Eriksen, E. F. (2010) Cellular mechanisms of bone remodeling. Reviews in Endocrine and Metabolic Disorders 11(4), 219–227. doi:10.1007/s11154‐010‐9153‐1.
15 Feller, L., Khammissa, R. A., Schechter, I. et al. (2015) periodontal biological events associated with orthodontic tooth movement: the biomechanics of the cytoskeleton and the extracellular matrix. Scientific World Journal 894123. doi:10.1155/2015/894123.
16 Fernández‐Tresguerres‐Hernández‐Gil, I., Alobera‐Gracia, M. A., del‐Canto‐Pingarrón, M. and Blanco‐Jerez, L. (2006a) Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Medicina Oral Patologia Oral y Cirugia Bucal 11(1), E47–51.
17 Fernández‐Tresguerres‐Hernández‐Gil, I., Alobera‐Gracia, M. A., del‐Canto‐Pingarrón, M. and Blanco‐Jerez, L. (2006b) Physiological bases of bone regeneration II. The remodeling process. Medicina Oral Patologia Oral y Cirugia Bucal 11(2), E151–157.
18 Franzen, T. J., Brudvik, P. and Vandevska‐Radunovic, V. (2013) Periodontal tissue reaction during orthodontic relapse in rat molars. European Journal of Orthodontics 35(2), 152–159. doi:10.1093/ejo/cjr127.
19 Garant, P. R. and Cho, M. I. (1979) Autoradiographic evidence of the coordination of the genesis of Sharpey's fibers with new bone formation in the periodontium of the mouse. Journal of Periodontal Research 14(2), 107–114. doi:10.1111/j.1600‐0765.1979.tb00779.x.
20 Gordon, S. and Martinez‐Pomares, L. (2017) Physiological roles of macrophages. Pflugers Archiv 469(3–4), 365–374. doi:10.1007/s00424‐017‐1945‐7.
21 Gordon, S. and Plüddemann, A. (2017) Tissue macrophages: heterogeneity and functions. BMC Biology 15(1), 53. doi:10.1186/s12915‐017‐0392‐4.
22 Hadjidakis, D. J. and Androulakis, II. (2006) Bone remodeling. Annals of the New York Academy of Sciences 1092, 385–396. doi:10.1196/annals.1365.035.
23 Harizi, H., Corcuff, J.‐B. and Gualde, N. (2008) Arachidonic‐acid‐derived eicosanoids: roles in biology and immunopathology. Trends in Molecular Medicine 14(10), 461–469. doi:10.1016/j.molmed.2008.08.005.
24 Hasegawa, T. (2018) Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochemistry and Cell Biology 149(4), 289–304. doi:10.1007/s00418‐018‐1646‐0.
25 Henneman, S., Von den Hoff, J. W., and Maltha, J. C. (2008). Mechanobiology of tooth movement. European Journal of Orthodontics 30, 299–306. doi.org/10.1093/ejo/cjn020
26 Henneman, S., Reijers, R. R., Maltha, J. C. and Von den Hoff, J. W. (2012) Local variations in turnover of periodontal collagen fibers in rats. Journal of Periodontal Research 47(3), 383–388. doi:10.1111/j.1600‐0765.2011.01444.x.
27 Hill, P. A., Tumber, A. and Meikle, M. C. (1997) Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology 138(9), 3849–3858. doi:10.1210/endo.138.9.5370.
28 Hixon, E. H., Aasen, T. O., Clark, R. A. et al. (1970) On force and tooth movement. American Journal of Orthodontics 57(5), 476–478. doi:10.1016/0002‐9416(70)90166‐1.
29 Hixon, E. H., Atikian, H., Callow, G. E. et al. (1969) Optimal force, differential force and anchorage. American Journal of Orthodontics 55(5), 437–457. doi:10.1016/0002‐9416(69)90083‐9.
30 Hock, J. M., Krishnan, V., Onyia, J. E. et al. (2001) Osteoblast apoptosis and bone turnover. Journal of Bone and Mineral Research 16(6), 975–984. doi:10.1359/jbmr.2001.16.6.975.
31 Hubmacher, D., Tiedemann, K., and Reinhardt, D. P. (2006) Fibrillins: from biogenesis of microfibrils to signaling functions. Current Topics in Developmental Biology 75, 93–123.
32 Jiang, C., Li, Z., Quan, H. et al. (2015) Osteoimmunology in orthodontic tooth movement. Oral Diseases 21(6), 694–704. doi:10.1111/odi.12273.
33 Jiang, N., Guo, W., Chen, M. et al. (2016) Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Frontiers of Oral Biology 18, 1–8. doi:10.1159/000351894.
34 Jilka, R. L., Weinstein, R. S., Bellido, T. et al. (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. Journal of Bone and Mineral Research 13(5), 793–802. doi:10.1359/jbmr.1998.13.5.793.
35 Jonsdottir, S. H., Giesen, E. B. and Maltha, J. C. (2012) The biomechanical behaviour of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement. European Journal of Orthodontics 34(5), 542–546. doi:10.1093/ejo/cjq186.
36 Jónsdóttir, S. H., Giesen, E. B. and Maltha, J. C. (2006) Biomechanical behaviour of the periodontal ligament of the beagle dog during the first 5 hours of orthodontic force application. European Journal of Orthodontics 28(6), 547–552. doi:10.1093/ejo/cjl050.
37 Kechagia, J. Z., Ivaska, J. and Roca‐Cusachs, P. (2019) Integrins as biomechanical sensors of the microenvironment. Nature Reviews Molecular Cell Biology 20(8), 457–473. doi:10.1038/s41580‐019‐0134‐2.
38 Kerrigan, J. J., Mansell, J. P. and Sandy, J. R. (2000) Matrix turnover. Journal of Orthodontics 27, 227–233.
39 Kielty, C.M. (2006) Elastic fibres in health and disease. Expert Reviews in Molecular Medicine 8(19), 1‐23. doi: 10.1017/S146239940600007X.
40 Klein‐Nulend, J., Bakker, A. D., Bacabac, R. G. et al. (2013) Mechanosensation and transduction in osteocytes. Bone 54(2), 182–190. doi:10.1016/j.bone.2012.10.013.
41 Krishnan, V. and Davidovitch, Z. (2006) Cellular, molecular and tissue‐level reactions to orthodontic force. American Journal of Orthodontics and Dentofacial Orthopedics 129(4), 469.e461–432. doi:10.1016/j.ajodo.2005.10.007.
42 Lee, D., Sims, M. R., Dreyer, C. W., & Sampson, W. J. (1991) A scanning electron microscope study of microcorrosion casts of the microvasculature of the marmoset palate, gingiva and periodontal ligament. Archives of Oral Biology 36, 211–220.
43 Lekic, P. and McCulloch, C. A. (1996) Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anatomical Record 245(2), 327–341. doi:10.1002/(sici)1097‐0185(199606)245:2<327::Aid‐ar15>3.0.Co;2‐r.
44 Lerner, U. H. (2012) Osteoblasts, osteoclasts and osteocytes: Unveiling their intimate‐associated responses to appplied orthodontic forces. Seminars in Orthodontics 18, 237–248.
45 Lerner, U. H., Kindstedt, E. and Lundberg, P. (2019) The critical interplay between bone resorbing and bone forming cells. Journal of Clinical Periodontology 46(Suppl 21.), 33–51. doi:10.1111/jcpe.13051.
46 Li, Y., Jacox, L. A., Little, S. H. and Ko, C. C. (2018) Orthodontic tooth movement: The biology and clinical implications. Kaohsiung Journal of Medical Science 34(4), 207–214. doi:10.1016/j.kjms.2018.01.007.
47 Listik, E., Azevedo Marques Gaschler, J., Matias, M., et al. (2019) Proteoglycans and dental biology: the first review. Carbohydrate Polymers 225, 115199.
48 Littlewood, S. J., Kandasamy, S. and Huang, G. (2017) Retention and relapse in clinical practice. Australian Dental Journal 62(Suppl. 1), 51–57. doi:10.1111/adj.12475.
49 Maeda, T., Kannari, K., Sato, O. and Iwanaga, T. (1990) Nerve terminals in human periodontal ligament as demonstrated by immunohistochemistry for neurofilament protein (NFP) and S‐100 protein. Archives of Histology and Cytology 53, 259–265.
50 Maeda, T., Ochi, K., Nakakura‐Ohshima, K. et al. (1999) The Ruffini ending as the primary mechanoreceptor in the periodontal ligament: its morphology, cytochemical features, regeneration, and development. Critical Reviews in Oral Biology and Medicine 10, 307–327.
51 Maltha, J. C. and Von den Hoff, J. W. (2017) Biological basis for orthdontic relapse, in Stabiity, Retention and Relapse in Orthodontics (eds C. Katsaros and T. Eliades). Quinessence, Berlin. Pp. 15–28.
52 Marson, A., Rock, M. J., Cain, S. A. et al. (2005) Homotypic fibrillin‐1 interactions in microfibril assembly. The Journal of Biological Chemistry 280, 5013–5021.
53 Martino, F., Perestrelo, A. R., Vinarský, V. et al. (2018) Cellular mechanotransduction: from tension to function. Frontiers in Physiology 9, 824. doi:10.3389/fphys.2018.00824.
54 McGeachie, J. and Tennant, M. (1997) Growth factors and their implications for clinicians: a brief review. Australian Dental Journal 42(6), 375–380. doi:10.1111/j.1834‐7819.1997.tb06081.x.
55 Meikle, M. C. (2006) The tissue, cellular and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. European Journal of Orthodontics 28(3), 221–240. doi:10.1093/ejo/cjl001.
56 Militi, A., Cutroneo, G., Favaloro, A. et al. (2019) An immunofluorescence study on VEGF and extracellular matrix proteins in human periodontal ligament during tooth movement. Heliyon 5(10), e02572. doi:10.1016/j.heliyon.2019.e02572.
57 Mundy, G. R. (1993) Cytokines and growth factors in the regulation of bone remodeling. Journal of Bone and Mineral Research 8(Suppl. 2), S505–510. doi:10.1002/jbmr.5650081315.
58 Murdoch, C., Giannoudis, A. and Lewis, C. E. (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8), 2224–2234. doi:10.1182/blood‐2004‐03‐1109.
59 Nakamura, Y., Noda, K., Shimoda, S. et al. (2008) Time‐lapse observation of rat periodontal ligament during function and tooth movement, using microcomputed tomography. European Journal of Orthodontics 30(3), 320–326. doi:10.1093/ejo/cjm133.
60 Nanci, A. and Bosshardt, D. D. (2006) Structure of periodontal tissues in health and disease. Periodontology 200040, 11–28. doi:10.1111/j.1600‐0757.2005.00141.x.
61 Ortún‐Terrazas, J., Cegoñino, J., Santana‐Penín, U. et al. (2018) Approach towards the porous fibrous structure of the periodontal ligament using micro‐computerized tomography and finite element analysis. Journal of the Mechanical Behaviour of Biomedical Materials 79, 135–149. doi:10.1016/j.jmbbm.2017.12.022.
62 Pilon, J. J., Kuijpers‐Jagtman, A. M. and Maltha, J. C. (1996) Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. American Journal of Orthodontics and Dentofacial Orthopedics 110(1), 16–23. doi:10.1016/s0889‐5406(96)70082‐3.
63 Roodman, G. D. (1993) Role of cytokines in the regulation of bone resorption. Calcified Tissue International 53(Suppl. 1), S94–98. doi:10.1007/bf01673412.
64 Salomão, M. F., Reis, S. R., Vale, V. L. et al. (2014) Immunolocalization of FGF‐2 and VEGF in rat periodontal ligament during experimental tooth movement. Dental Press Journal of Orthodontics 19(3), 67–74. doi:10.1590/2176‐9451.19.3.067‐074.oar.
65 Selliseth, N. J. and Selvig, K. A. (1994) The vasculature of the periodontal ligament: a scanning electron microscopic study using corrosion casts in the rat. Journal of Periodontology 65, 1079–1087.
66 Snoek‐van Beurden, P. A. M. and Von den Hoff, J. W. (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques 38(1), 73–83. doi:10.2144/05381RV01.
67 Strydom, H., Maltha, J. C., Kuijpers‐Jagtman, A. M. and Von den Hoff, J. W. (2012) The oxytalan fibre network in the periodontium and its possible mechanical function. Archives of Oral Biology 57, 1003–1011.
68 Suda, T., Takahashi, N., Udagawa, N. et al. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Reviews 20(3), 345–357. doi:10.1210/edrv.20.3.0367.
69 Svensson, L., Oldberg, A., & Heinegård, D. (2001) Collagen binding proteins. Osteoarthritis and Cartilage 9 Suppl A, S23–S28.
70 Takahashi, N., Ejiri, S., Yanagisawa, S. and Ozawa, H. (2007) Regulation of osteoclast polarization. Odontology 95(1), 1–9. doi:10.1007/s10266‐007‐0071‐y.
71 Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289(5484), 1504–1508. doi:10.1126/science.289.5484.1504.
72 Tokuhara, C. K., Santesso, M. R., Oliveira, G. S. N. et al. (2019) Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. Journal of Applied Oral Science 27, e20180596. doi:10.1590/1678‐7757‐2018‐0596.
73 Tresguerres, F. G. F., Torres, J., López‐Quiles, J. et al. (2020) The osteocyte: A multifunctional cell within the bone. Annals of Anatomy 227, 151422. doi:10.1016/j.aanat.2019.151422.
74 Tse, L. H. and Wong, Y. H. (2019) GPCRs in Autocrine and Paracrine Regulations. Frontiers in Endocrinology 10, 428. doi:10.3389/fendo.2019.00428.
75 Tsuge, A., Noda, K. and Nakamura, Y. (2016) Early tissue reaction in the tension zone of PDL during orthodontic tooth movement. Archives of Oral Biology 65, 17–25. doi:10.1016/j.archoralbio.2016.01.007.
76 Uhlir, R., Mayo, V., Lin, P. H. et al. (2017) Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement. The Angle Orthodontist 87(2), 183–192. doi:10.2319/092615‐651.1.
77 van Driel, W. D., van Leeuwen, E. J., Von den Hoff, J. W. et al. (2000) Time‐dependent mechanical behaviour of the periodontal ligament. Proceedings of the Institute of Mechanical Engineers H 214(5), 497–504. doi:10.1243/0954411001535525.
78 van Leeuwen, E. J., Maltha, J. C. and Kuijpers‐Jagtman, A. M. (1999) Tooth movement with light continuous and discontinuous forces in beagle dogs. European Journal of Oral Sciences 107(6), 468–474. doi:10.1046/j.0909‐8836.1999.eos107608.x.
79 van Leeuwen, E. J., Maltha, J. C., Kuijpers‐Jagtman, A. M. and van 't Hof, M. A. (2003) The effect of retention on orthodontic relapse after the use of small continuous or discontinuous forces. An experimental study in beagle dogs. European Journal of Oral Sciences 111(2), 111–116. doi:10.1034/j.1600‐0722.2003.00024.x.
80 Vansant, L., Cadenas De Llano‐Pérula, M., Verdonck, A. and Willems, G. (2018) Expression of biological mediators during orthodontic tooth movement: A systematic review. Archives of Oral Biology 95, 170–186. doi:10.1016/j.archoralbio.2018.08.003.
81 Verstappen, J. and Von den Hoff, J. W. (2006) Tissue inhibitors of metalloproteinases (TIMPs): their biological functions and involvement in oral disease. Journal of Dental Research 85(12), 1074–1084. doi:10.1177/154405910608501202.
82 Viecilli, R. F., Kar‐Kuri, M. H., Varriale, J. et al. (2013) Effects of initial stresses and time on orthodontic external root resorption. Journal of Dental Research 92(4), 346–351. doi:10.1177/0022034513480794.
83 Viecilli, R. F., Katona, T. R., Chen, J. et al. (2008) Three‐dimensional mechanical environment of orthodontic tooth movement and root resorption. American Journal of Orthodontics and Dentofacial Orthopedics 133(6), 791.e711–726. doi:10.1016/j.ajodo.2007.11.023.
84 Von Böhl, M. and Kuijpers‐Jagtman, A. M. (2009) Hyalinization during orthodontic tooth movement: a systematic review on tissue reactions. European Journal of Orthodontics 31(1), 30–36. doi:10.1093/ejo/cjn080.
85 Von Böhl, M., Maltha, J., Von den Hoff, H. and Kuijpers‐Jagtman, A. M. (2004a) Changes in the periodontal ligament after experimental tooth movement using high and low continuous forces in beagle dogs. The Angle Orthodontists 74(1), 16–25. doi:10.1043/0003‐3219(2004)074<0016:Citpla>2.0.Co;2.
86 Von Böhl, M., Maltha, J. C., Von Den Hoff, J. W. and Kuijpers‐Jagtman, A. M. (2004b) Focal hyalinization during experimental tooth movement in beagle dogs. American Journal of Orthodontics and Dentofacial Orthopedics 125(5), 615–623. doi:10.1016/j.ajodo.2003.08.023.
87 Waddington, R. J. and Embery, G. (2001) Proteoglycans and orthodontic tooth movement. Journal of Orthodontics 28, 281–290.
88 Walko, G., Castañón, M. J. and Wiche, G. (2015) Molecular architecture and function of the hemidesmosome. Cell and Tissue Research 360(3), 529–544. doi:10.1007/s00441‐015‐2216‐6.
89 Wang, C. Y., Su, M. Z., Chang, H. H. et al. (2012) Tension‐compression viscoelastic behaviors of the periodontal ligament. Journal of the Formosan Medical Association 111(9), 471–481. doi:10.1016/j.jfma.2011.06.009.
90 Wenger, M. P., Bozec, L., Horton, M. A. and Mesquida, P. (2007) Mechanical properties of collagen fibrils. Biophysical Journal 93, 1255–1263.
91 Wu, B., Zhao, S., Shi, H. et al. (2019) Viscoelastic properties of human periodontal ligament: effects of the loading frequency and location. The Angle Orthodontist 89(3), 480–487. doi:10.2319/062818‐481.1.
92 Xia, L., Li, H., Wang, S., Al‐Balaa, M. et al. (2019) The expression of extracellular matrix metalloproteinase inducer (EMMPRIN) in the compression area during orthodontic relapse. European Journal of Orthodontics 42(Suppl. 1). doi:10.1093/ejo/cjz046.
93 Xiao, W., Wang, Y., Pacios, S. et al. (2016) Cellular and molecular aspects of bone remodeling. Frontiers of Oral Biology 18, 9–16. doi:10.1159/000351895.
94 Yamaguchi, M. (2009) RANK/RANKL/OPG during orthodontic tooth movement. Orthodontics and Craniofacial Research 12(2), 113–119. doi:10.1111/j.1601‐6343.2009.01444.x.
95 Yamaguchi M., Nakajima R. and Kasai K. (2012) Mechanoreceptors, nociceptors, and orthodontic tooth movement. Seminars in Orthodontics 18(4), 249–256. doi.org/10.1053/j.sodo.2012.06.003.
96 Yamamoto, T., Hasegawa, T., Yamamoto, T. et al. (2016) Histology of human cementum: Its structure, function and development. Japanese Dental Science Review 52(3), 63–74. doi:10.1016/j.jdsr.2016.04.002.
97 Yoshida, Y., Sasaki, T., Yokoya, K. et al. (1999) Cellular roles in relapse processes of experimentally‐moved rat molars. Journal of Electron Microscopy 48(2), 147–157. doi:10.1093/oxfordjournals.jmicro.a023661.