Читать книгу Biological Mechanisms of Tooth Movement - Группа авторов - Страница 54
Introduction
ОглавлениеOrthodontic tooth movement (OTM) is induced by mechanical stimuli and facilitated by remodeling of the periodontal ligament (PDL) and alveolar bone. A precondition for these remodeling activities, and ultimately for tooth displacement, is the occurrence of an aseptic inflammatory process. Vascular and cellular changes were the first events to be recognized and described, and a number of inflammatory mediators, including cytokines and neuropeptides, have been demonstrated in periodontal supporting tissues. Their increased levels during OTM have led to the assumption that interactions between cells producing these substances, such as nerve, immune, and endocrine system cells, regulate the biological responses that occur following the application of orthodontic forces (Krishnan and Davidovitch, 2006a).
Mechanical stress evokes biochemical responses and structural changes in a variety of cell types in vivo and in vitro. The overall objective of many investigations has been to further the understanding of the mechanisms involved in converting molecular and/or mechanical stress to the cellular responses that result in tooth movement. The recent advances in the understanding of the mechanisms underlying so‐called aseptic inflammation, mediated by tissue damage products collectively denominated damage associated molecular pattern proteins (DAMPs), have provided a rationale for inflammatory response triggering after orthodontic force‐induced mechanical stress/damage (Chen and Nunez, 2010). In sites at which inflammation and tissue destruction have occurred, cells may communicate with one another through the interaction of cytokines and other related molecules. Thus it is important to elucidate completely the complex cytokine cascade flow associated with inflammation‐mediated tissue destruction at the molecular level (Davidovitch et al., 1988), as well as the intricate molecular network where the simultaneous action and presence of several mediators can determine the outcome of the response to the orthodontic force. This chapter reviews current evidence regarding the role of inflammation in the periodontal tissue reactions in response to orthodontic force application.