Читать книгу Polysaccharides - Группа авторов - Страница 28

References

Оглавление

1. Ray, A., Dutta Gupta, S., Ghosh, S., Isolation and characterization of potent bioactive fraction with antioxidant and UV absorbing activity from Aloe barbadensis Miller gel. J. Plant Biochem. Biotechnol., 22, 4, 483–7, 2013.

2. Reynolds, T. and Dweck, A.C., Aloe vera leaf gel: A review update. J. Ethnopharmacol., 68, 1–3, 3–37, 1999.

3. Choi, S. and Chung, M.H., A review on the relationship between components and their biologic effects. Semin. Integr. Med., 1, 1, 53–62, 2003.

4. Ni, Y., Turner, D., Yates, K.M., Tizard, I., Isolation and characterization of structural components of Aloe vera L. leaf pulp. Int. Immunopharmacol., 4, 14 Spec.Iss., 1745–55, 2004.

5. Chun-hui, L., Chang-hai, W., Zhi-liang, X., Yi, W., Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water. Process Biochem., 42, 6, 961–70, 2007.

6. Hamman, J.H., Composition and applications of Aloe vera leaf gel. Molecules, 13, 8, 1599–616, 2008.

7. Rodríguez-González, V.M., Femenia, A., González-Laredo, R.F., Rocha-Guzmán, N.E., Gallegos-Infante, J.A., Candelas-Cadillo, M.G. et al., Effects of pasteurization on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydr. Polym., 86, 4, 1675–83, 2011.

8. Manna, S. and McAnalley, B., Determination of the position of the O-acetyl group in a B-(1-4)mannan (acemannan) from Aloe barbadensis Miller. Carbohydr. Res., 241, 317–9, 1993.

9. Femenia, A., Sánchez, E.S., Simal, S., Rosselló, C., Compositional features of polysaccharides from (Aloe barbadensis Miller) plant tissues. Carbohydr. Polym., 39, 2, 109–17, 1999.

10. Talmadge, J., Chavez, J., Jacobs, L., Munger, C., Chinnah, T., Chow, J.T. et al., Fractionation of Aloe vera L. inner gel, purification and molecular profiling of activity. Int. Immunopharmacol., 4, 14 spec. Iss., 1757–73, 2004.

11. Chow, T.-N.J., Williamson, D.A., Yates, K.M., Goux, W.J., Chemical characterization of the immunomodulating polysaccharide of Aloe vera L. Carbohydr. Res., 340, 6, 1131–42, 2005.

12. Ni, Y., Yates, K.M., Tizard, I., Aloe polysaccharides, in: Aloes: The genus Aloe, T. Reynolds, (Ed.), pp. 76–82, CRC Press Taylor and Francis group, USA, 2004.

13. Campestrini, L.H., Silveira, J.L.M., Duarte, M.E.R., Koop, H.S., Noseda, M.D., NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydr. Polym., 94, 1, 511–9, 2013.

14. Chokboribal, J., Tachaboonyakiat, W., Sangvanich, P., Ruangpornvisuti, V., Jettanacheawchankit, S., Thunyakitpisal, P., Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera. Carbohydr. Polym., 133, 556–66, 2015.

15. Kim, Y.S., Chemical components of Aloe and its analysis, in: New Perspectves on Aloe, Y.I. Park, and S.K. Lee, (Eds.), pp. 57–62, Springer U., Boston, MA, 2006.

16. Ali, J., Khan, A., Kotta, S., Ansari, S., Sharma, R., Kumar, A., Formulation development, optimization and evaluation of aloe vera gel for wound healing. Pharmacogn. Mag., 9, 36, 6, 2013.

17. Ramachandra, C.T. and Srinivasa Rao, P., Processing of Aloe vera leaf gel: A review. Am. J. Agric. Biol. Sci., 3, 2, 502–10, 2008.

18. Ahlawat, K.S. and Khatkar, B.S., Processing, food applications and safety of aloe vera products: A review. J. Food Sci. Technol., 48, 5, 525–33, 2011.

19. Bozzi, A., Perrin, C., Austin, S., Arce Vera, F., Quality and authenticity of commercial aloe vera gel powders. Food Chem., 103, 1, 22–30, 2007.

20. Femenia, A., García-Pascual, P., Simal, S., Roselló, C., Effects of heat treatment and dehydration on bioactive polysaccaride acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydr. Polym., 51, 397–405, 2003.

21. Turner, C.E., Williamson, D.A., Stroud, P.A., Talley, D.J., Evaluation and comparison of commercially available Aloe vera L. products using size exclusion chromatography with refractive index and multi-angle laser light scattering detection. Int. Immunopharmacol., 4, 14 Spec. Iss., 1727–37, 2004.

22. Kiran, P. and Rao, P.S., Rheological and structural characterization of prepared aqueous Aloe vera dispersions. Food Res. Int., 62, 1029–37, 2014.

23. Cervantes-Martínez, C.V., Medina-Torres, L., González-Laredo, R.F., Calderas, F., Sánches-Olivares, G., Herrera-Valencia, E.E., Gallegos-Infante, J.A., Rocha-Guzman, N.E., Rodríguez-Ramírez, J., Study of spray drying of the Aloe vera mucilage (Aloe vera barbadensis Miller) as a function of its rheological properties. LWT—Food Sci. Technol., 55, 426–435, 2014.

24. Ray, A. and Aswatha, S.M., An analysis of the influence of growth periods on physical appearance, and acemannan and elemental distribution of Aloe vera L. gel. Ind. Crops Prod., 48, 36–42, 2013.

25. Ray, A., Ghosh, S., Ray, A., Aswatha, S.M., An analysis of the influence of growth periods on potential functional and biochemical properties and thermal analysis of freeze-dried Aloe vera L. gel. Ind. Crops Prod., 76, 298–305, 2015.

26. Flores-López, M.L., Romaní, A., Cerqueira, M.A., Rodríguez-García, R., Jasso de Rodríguez, D., Vicente, A.A., Compositional features and bioactive properties of whole fraction from Aloe vera processing. Ind. Crops Prod., 91, 179–85, 2016.

27. Minjares-Fuentes, R., Eim, V., González-Centeno, M.R., Femenia, A., Rodríguez-González, V.M., González-Laredo, R.F., Effect of different drying procedures on the bioactive polysaccharide acemannan from Aloe vera (Aloe barbadensis Miller). Carbohydr. Polym., 168, 327–36, 2017.

28. Minjares-Fuentes, R., Femenia, A., Comas-Serra, F., Rosselló, C., Rodríguez-González, V.M., González-Laredo, R.F. et al., Effect of different drying procedures on physicochemical properties and flow behavior of Aloe vera (Aloe barbadensis Miller) gel. LWT—Food Sci. Technol., 74, 378–86, 2016.

29. Eshun, K. and He, Q., Aloe vera: A valuable ingredient for the food, pharmaceutical and cosmetic industries—A review. Food Sci. Nutr., 44, 2, 91–6, 2004.

30. Sriariyakul, W., Swasdisevi, T., Devahastin, S., Soponronnarit, S., Drying of aloe vera puree using hot air in combination with far-infrared radiation and high-voltage electric field: Drying kinetics, energy consumption and product quality evaluation. Food Bioprod. Process., 100, 391– 400, 2016.

31. Lim, Z.X. and Cheong, K.Y., Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices. Phys. Chem. Chem. Phys., 17, 40, 26833–26853, 2015.

32. Kim, K., Lee, J., Gyuun, D., Kim, M., Park, J., Shin, Y. et al., The development of a new method to detect the adulteration of commercial aloe gel powders. Arch. Pharm. Res., 21, 5, 514–20, 1998.

33. Minjares-Fuentes, R., Femenia, A., Comas-Serra, F., Rodríguez-González, V.M., Compositional and Structural Features of the Main Bioactive Polysaccharides Present in the Aloe vera Plant. J. AOAC Int., 101, 6, 1711–9, 2018.

34. Chang, X.L., Chen, B.Y., Feng, Y.M., Water-soluble polysaccharides isolated from skin juice, gel juice and flower of Aloe vera Miller. J. Taiwan Inst. Chem. Eng., 42, 197–203, 2011.

35. Ni, Y., Yates, K.M., Tizard, I.R., Aloe polysaccharides, in: Aloes: The genus Aloe, T. Reynolds (Ed.), pp. 90–102, CRC Press Taylor and Francis group, USA, 2004.

36. Diehl, B. and Teichmuller, E.E., Aloe vera, quality inspection and identification. Agro Food Ind. Hi-Tech, 9, 1, 14–6, 1998.

37. Kiran, P. and Rao, P.S., Development and characterization of reconstituted hydrogel from Aloe vera (Aloe barbadensis Miller) powder. J. Food Meas. Charact., 10, 3, 411–24, 2016.

38. Davis, B. and Goux, W.J., Single-Laboratory Validation of an NMR Method for the Determination of Aloe vera Polysaccharide in Pharmaceutical Formulations. J. AOAC Int., 92, 6, 1607–16, 2009.

39. Jiao, P. and Jia, Q., Quantitative H-NMR Spectrometry Method for Quality Control of Aloe vera Products. J. AOAC Int., 93, 3, 842–8, 2010.

40. Simões, J., Nunes, F.M., Domingues, P., Coimbra, M.A., Domingues, M.R., Mass spectrometry characterization of an Aloe vera mannan presenting immunostimulatory activity. Carbohydr. Polym., 90, 1, 229–36, 2012.

41. Medina-Torres, L., Núñez-Ramírez, D.M., Calderas, F., González-Laredo, R.F., Minjares-Fuentes, R., Valadez-Garcia, M.A. et al., Microencapsulation of gallic acid by spray drying with aloe vera mucilage (Aloe barbadensis Miller) as wall material. Ind. Crops Prod., 138, 111461, 2019.

42. Medina-Torres, L., Núñez-Ramírez, D.M., Calderas, F., Bernad-Bernad, M.J., Gracia-Mora, J., Rodríguez-Ramírez, J. et al., Curcumin encapsulation by spray drying using Aloe vera mucilage as encapsulating agent. J. Food Process. Eng., 42, e12972, 1–12, 2019.

43. Khaliq, G., Abbas, H.T., Intazar, A., Waseem, M., Aloe vera gel enriched with garlic essential oil effectively controls anthracnose disease and maintains postharvest quality of banana fruit during storage. Hortic. Environ. Biotechnol., 60, 659–69, 2019.

44. Monzón-Ortega, K., Salvador-Figueroa, M., Gálvez-López, D., Rosas-Quijano, R., Ovando-Medina, I., Vázquez-Ovando, A., Characterization of Aloe vera–chitosan composite films and their use for reducing the disease caused by fungi in papaya Maradol. J. Food Sci. Technol., 55, 12, 4747–57, 2018.

45. Nourozi, F. and Sayyari, M., Enrichment of Aloe vera gel with basil seed mucilage preserve bioactive compounds and postharvest quality of apricot fruits. Sci. Hortic. (Amsterdam), 262, 109041, 2020.

46. Rahman, S., Carter, P., Bhattarai, N., Aloe Vera for Tissue Engineering Applications. J. Funct. Biomater., 8, 1, 6, 2017.

47. Inpanya, P., Faikrua, A., Ounaroon, A., Sittichokechaiwut, A., Viyoch, J., Effects of the blended fibroin/aloe gel film on wound healing in streptozotocin-induced diabetic rats. Biomed. Mater., 7, 3, 035008, 2012.

48. Khoshgozaran, S., Azizi, M.H., Hamidy, Z., Bagheripoor-Fallah, N., Mechanical, physicochemical and color properties of chitosan based-films as a function of aloe vera gel incorporation. Carbohydr. Polym., 87, 3, 2058–62, 2012.

49. Park, K.R. and Nho, Y.C., Preparation and characterization by radiation of hydrogels of PVA and PVP containing Aloe Vera. J. Appl. Polym. Sci., 91, 3, 1612–8, 2004.

50. Pereira, R., Tojeira, A., Vaz, D.C., Mendes, A., Bártolo, P., Preparation and characterization of films based on alginate and aloe vera. Int. J. Polym. Anal. Charact., 16, 7, 449–64, 2011.

51. Chen, C.P., Wang, B.J., Weng, Y.M., Physiochemical and antimicrobial properties of edible aloe/ gelatin composite films. Int. J. Food Sci. Technol., 45, 5, 1050–5, 2010.

52. Koga, A.Y., Pereira, A.V., Lipinski, L.C., Oliveira, M.R.P., Evaluation of wound healing effect of alginate films containing Aloe vera (Aloe barbadensis Miller) gel. J. Biomater. Appl., 32, 9, 1212–21, 2018.

53. Ranjbar-Mohammadi, M., Characteristics of aloe vera incorporated poly(ε-caprolactone)/gum tragacanth nanofibers as dressings for wound care. J. Ind. Text., 47, 7, 1464–77, 2018.

54. Saibuatong, O. and Phisalaphong, M., Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr. Polym., 79, 2, 455–60, 2010.

55. Silva, S.S., Popa, E.G., Gomes, M.E., Cerqueira, M., Marques, A.P., Caridade, S.G. et al., An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomater., 9, 6, 6790–7, 2013.

56. Silva, S.S., Oliveira, M.B., Mano, J.F., Reis, R.L., Bio-inspired Aloe vera sponges for biomedical applications. Carbohydr. Polym., 112, 264–70, 2014.

57. Salah, F., El Ghoul, Y., Alminderej, F.M., El Golli-Bennour, E., Ouanes, Z., Maciejak, O. et al., Development , characterization , and biological assessment of biocompatible cellulosic wound dressing grafted Aloe vera bioactive polysaccharide. Cellulose, 26, 8, 4957–70, 2019.

58. Abdel-Mohsen, A.M., Abdel-Rahman, R.M., Kubena, I., Kobera, L., Spotz, Z., Zboncak, M., Chitosan–glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. Part I: Preparation and characterization. Carbohydr. Polym., 230, 115708, 2020.

59. Aghamohamadi, N., Sanjanii, N.S., Majidi, R.F., Nasrollahi, S.A., Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials. Mater. Sci. Eng. C, 94, 445–52, 2019.

60. Vega-Gálvez, A., Giovagnoli, C., Pérez-Won, M., Reyes, J.E., Vergara, J., Miranda, M. et al., Application of high hydrostatic pressure to aloe vera (Aloe barbadensis Miller) gel: Microbial inactivation and evaluation of quality parameters. Innov. Food Sci. Emerg. Technol., 13, 57–63, 2012.

61. Vega-Gálvez, A., Miranda, M., Nuñez-Mancilla, Y., Garcia-Segovia, P., Ah-Hen, K., Tabilo-Munizaga, G. et al., Influence of high hydrostatic pressure on quality parameters and structural properties of aloe vera gel (Aloe barbadensis Miller). J. Food Sci. Technol., 51, 10, 2481–9, 2012.

62. Miranda, M., Vega-Gálvez, A., García, P., Di Scala, K., Shi, J., Xue, S. et al., Effect of temperature on structural properties of Aloe vera (Aloe barbadensis Miller) gel and Weibull distribution for modelling drying process. Food Bioprod. Process., 88, 2–3, 138–44, 2010.

63. Chang, X.L., Wang, C., Feng, Y., Liu, Z., Effects of heat treatments on the stabilities of polysaccharides substances and barbaloin in gel juice from Aloe vera Miller. J. Food Eng., 75, 2, 245–51, 2006.

64. Keshani, S., Daud, W.R.W., Nourouzi, M.M., Namvar, F., Ghasemi, M., Spray drying: An overview on wall deposition, process and modeling. J. Food Eng., 146, 152–62, 2015.

65. León-Martínez, F.M., Méndez-Lagunas, L.L., Rodríguez-Ramírez, J., Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydr. Polym., 81, 4, 864–70, 2010.

66. Alvarado-Morales, G., Minjares-Fuentes, R., Contreras-Esquivel, J.C., Montañez, J., Meza-Velázquez, J.A., Femenia, A., Application of thermosonication for Aloe vera (Aloe barbadensis Miller) juice processing: Impact on the functional properties and the main bioactive polysaccharides. Ultrason.—Sonochem., 56, 125–33, 2019.

67. Shi, X., Yin, J., Huang, X., Que, Z., Nie, S., Structural and conformational characterization of linear O-acetyl-glucomannan purified from gel of Aloe barbadensis Miller. Int. J. Biol. Macromol., 120, 2373–80, 2018.

68. Eberendu, A.R., Luta, G., Edwards, J.A., McAnalley, B.H., Davis, B., Rodriguez, S., Henry, C.R., Quantitative Colorimetric Analysis of Aloe Polysaccharides as a Measure of Aloe vera Qualty in Commercial Products. J. AOAC Int., 88, 3, 684–91, 2005.

69. Tan, Z-j., Li, F-f., Xu, X-l., Xing, J-m., Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination, 286, 389–93, 2012.

70. Anibarro-Ortega, M., Pinela, J., Barros, L., Ciric, A., Silva, S.P., Coelho, E. et al., Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants, 8, 444, 1–21, 2019.

71. Xing, J.M. and Li, F.F., Separation and purification of aloe polysaccharides by a combination of membrane ultrafiltration and aqueous two-phase extraction. Appl. Biochem. Biotechnol., 158, 1, 11–9, 2009.

72. Medina-Torres, L., Calderas, F., Minjares, R., Femenia, A., Sánchez-Olivares, G., Gónzalez-Laredo, F.R. et al., Structure preservation of Aloe vera (barbadensis Miller) mucilage in a spray drying process. LWT—Food Sci. Technol., 66, 93–100, 2016.

73. Lucini, L., Pellizzoni, M., Molinari, G., Pietro, Anthraquinones and β-polysaccharides content and distribution in Aloe plants grown under different light intensities. Biochem. Syst. Ecol., 51, 264–8, 2013.

74. Yates, K.M.B., Acemannan Review, pp. 1–7, Cela care tecnologies, LLC, Dallas, 2012, https://www.sanitawellbeing.com/pdf/acemannan_review.pdf, 2020.

75. Zhang, Y., Bao, Z., Ye, X., Xie, Z., Chemical investigation of major constituents in Aloe vera leaves and several comercial Aloe juice powders. J. AOAC Int., 101, 6, 1741–51, 2018.

76. Leung, M.Y.K., Liu, C., Zhu, L.F., Hui, Y.Z., Yu, B., Fung, K.P., Chemical and biological characterization of a polysaccharide biological response modifier from Aloe vera L. var. chinensis (Haw.), Berg. Glycobiology, 14, 6, 501–10, 2004.

77. Leung, M.Y.K., Liu, C., Zhu, L.F., Hui, Y.Z., Yu, B., Fung, K.P., Chemical and biological characterization of a polysaccharide biological response modifier from Aloe vera L. var. chinensis (Haw.). Berg. Glycobiology, 14, 6, 501–10, 2004.

78. He, K., Mergens, B., Yatcilla, M., Zheng, Q., Molecular Weight Determination of Aloe determination of Aloe polysaccharides using size exclusion chromatography coupled with multi-angle laler scaterring and refractive index detectors. J. AOAC Int., 101, 6, 1729–40, 2018.

79. Nejatzadeh-Barandozi, F. and Enferadi, S., FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment. Org. Med. Chem. Lett., 2, 1, 33, 2012.

80. Yaron, A., Cohen, E., Arad, S., Stabilization of Aloe Vera Gel By Interaction with Sulfated Polysaccharides from Red Microalgae and with Xanthan Gum. J. Agric. Food Chem., 40, 8, 1316–20, 1992.

81. Eberendu, A.N.R. and McAnalley, B.H., U.S. Patent; 5,512,488, 1996.

82. Pellizzoni, M., Ruzickova, G., Kalhotka, L., Lucini, L., Antimicrobial activity of different Aloe barbadensis Mill. and Aloe arborescens Mill. leaf fractions. J. Med. Plant Res., 6, 10, 1975–81, 2012.

83. Rodriguez, E.R., Martin, J.D., Romero, C.D., Aloe vera as a functional ingredient in foods. CRC Crit. Rev. Food Sci., 50, 4, 305–326, 2010.

84. Metcalfe, C., Quantitation of Aloe Vera Polysaccharides by O-Acetyl and UV–Vis Spectrophotometry: First Action 2018, 14. J. AOAC Int., 102, 4, 1091, 2019.

85. Ahl, L.I., Grace, O.M., Pedersen, H.L., Willats, W.G.T., Jorgensen, B., Ronsted, N., Analyses of Aloe Polysaccharides using carbohydrate microrray profiling. J. AOAC Int., 101, 6, 1720–8, 2018.

*Corresponding author: m.g.barbosafernandes@gmail.com

Polysaccharides

Подняться наверх