Читать книгу Magnetic Nanoparticles in Human Health and Medicine - Группа авторов - Страница 25

References

Оглавление

1 Abbas, M., Rao, B.P., Naga, S. et al. (2013). Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction‐surfactantless polyol process. Ceramics International 39: 7605.

2 Ahmed, N., Fessi, H., and Elaissari, A. (2012). Theranostic applications of nanoparticles in cancer. Drug Discovery Today 17: 928–934.

3 Aldred, A.T. (1975). Temperature dependence of the magnetization of nickel. Physical Review B 11: 2597.

4 Aldred, A.T. and Frohle, P.H. (1972). Temperature and field dependence of iron. International Journal of Magnetism and Magnetic Materials 2: 195.

5 Anbarasu, M., Anandan, M., Chinnasamy, E. et al. (2015). Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co‐precipitation method for biomedical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135 (25): 536–539.

6 Arruebo, M., Fernandez‐Pacheco, R., Ibarra, M.R., and Santamaria, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2 (3): 22–32.

7 Atanasijevic, T., Shusteff, M., Fam, P., and Jasanoff, A. (2006). Calcium‐sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proceedings of the National Academy of Sciences of the United States of America 103: 14707–14712.

8 Baberschke, K. (2001). Anisotropy in magnetism. In: Band‐Ferromagnetism, Lecture Notes in Physics, vol. 580 (eds. K. Baberschke, W. Nolting and M. Donath). Berlin, Heidelberg: Springer.

9 Back, C.H., Weller, D., Heidmann, J. et al. (1998). Magnetization reversal in ultrashort magnetic field pulses. Physical Review Letters 81: 3251.

10 Bacri, J.C., Perzinski, R., Salin, D. et al. (1986). Magnetic colloidal properties of ionic ferrofluids. Journal of Magnetism and Magnetic Materials 62: 36–46.

11 Baker, I., Zeng, Q., Li, W., and Sullivan, C.R. (2006). Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. Journal of Applied Physics 99: 08H106–08H106‐3.

12 Bao, G., Mitragotri, S., and Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering 15: 253–282.

13 Bean, C.P. and Livingston, L.D. (1959). Superparamagnetism. Journal of Applied Physics 30: S120–S129.

14 Berkowitz, A.E. and Kodama, R.H. (2006). Exchange anisotropy. In: Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures, Contemporary Concepts of Condensed Matter Science, vol. 1 (eds. D.L. Mills and J.A.C. Bland), 115–152. Elesevier Science.

15 Berkowitz, A.E., Lahut, J.A., Iacobs, I.S. et al. (1975). Spin pinning at ferrite‐organic interfaces. Physical Review Letters 34: 594.

16 Berkowitz, A.E., Lahut, J.A., and VanBuren, C.E. (1980). Properties of magnetic fluid particles. IEEE Transactions on Magnetics 16: 184.

17 Bloch, F. (1930). Zur Theorie des ferromagnetismus. Zeitschrift für Physik 61: 206.

18  Broese Van Groenou, A., Schulkes, J.A., and Annis, D.A. (1967). Magnetic anisotropy of some nickel zinc ferrite crystals. Journal of Applied Physics 38: 1133.

19 Brown, W.F. (1963). Thermal fluctuations of a single‐domain particle. Physical Review 130: 1677–1686.

20 Bulte, J.W.M. and Kraitchman, D.L. (2004). Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine 17 (7): 484–499.

21 Bulte, J.W.M., Duncan, I.D., and Frank, J.A. (2002). In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. Journal of Cerebral Blood Flow and Metabolism 22 (8): 899–907.

22 Caizer, C. (2002). Magnetic behavior of Mn0.6Fe0.4Fe2O4 nanopartciles in ferrofluid at low temperatures. Journal of Magnetism and Magnetic Materials 251: 304.

23 Caizer, C. (2003a). Structural and magnetic properties of nanocrystalline ZnO.65NiO.35FeO4 powder obtained from heteropolynuclear complex combination. Materials Science and Engineering B 100: 63.

24 Caizer, C. (2003b). T2 law for magnetite‐based ferrofluids. Journal of Physics: Condensed Matter 15: 765.

25 Caizer, C. (2004a). Magnetic Nanofluids (in Romanian). Timisoara: Eurobit Publishing.

26 Caizer, C. (2004b). Magnetic Nanoparticles Systems (in Romanian). Timisoara: Ed UVT.

27 Caizer, C. (2005a). Deviations from Bloch law in the case of surfacted nanoparticles. Applied Physics A: Materials Science & Processing 80: 1745.

28 Caizer, C. (2005b). The effect of the external magnetic field on the thermal relaxation of magnetization in systems of aligned nanoparticles. Journal of Physics: Condensed Mater 17 (12).

29 Caizer, C. (2008). Magnetic properties of the novel nanocomposite (Zn0.15Ni0.85Fe2O4)0.15/(SiO2)0.85 at room temperature. Journal of Magnetism and Magnetic Materials 320: 1056–1062.

30 Caizer, C. (2010). Nanobiomagnetism (in Romanian). Timisoara: Ed UVT.

31 Caizer, C. (2013). Bioelectromagnetism (in Romanian). Timisoara: Eurobit Publishing House.

32 Caizer, C. (2016). Nanoparticle size effect on some magnetic properties. In: Handbook of Nanoparticles (ed. M. Aliofkhazraei). Switzerland: Springer International Publishing.

33 Caizer (2017). Magnetic hyperthermia using magnetic metal/oxide nanoparticles with potential in cancer therapy. In: Metal Nanoparticles in Pharma (eds. M. Rai and R. Shegokar). Springer.

34 Caizer, C. (2019). Magnetic anisotropy of nanocomposites made of magnetic nanoparticles dispersed in solid matrices. In: Advances in Nanostructured Composites (ed. M. Aliofkhazraei). CRC Press – Taylor & Francis Group.

35 Caizer, C. and Stefanescu, M. (2002). Magnetic characterization of nanocrystalline Ni‐Zn ferrite powder prepared by the glyoxylate precursor method. Journal of Physics D 35: 3035.

36 Caizer, C. and Stefanescu, M. (2003). Nanocrystallite size effect on σs and Hc in nanoparticle assemblies. Physica B: Condensed Mater 327: 129–134.

37 Caizer, C. and Tura, V. (2006). Magnetic relaxation/stability of Co ferrite nanoparticles embedded in amorphous silica particles. Journal of Magnetism and Magnetic Materials 301: 513–520.

38 Caizer, C., Popovici, M., and Savii, C. (2003). Spherical(ZnδNi1‐δFe2O4)γ nanoparticles in an amorphous (SiO2)1‐γ matrix, prepared with the sol–gel method. Acta Materiala 51: 3607–3616.

39 Caizer, C., Buteica, A.S., and Mindrila, I. (2017). Biocompatible magnetic oxide nanoparticles with metal ions coated with organic shell as potential therapeutic agents in cancer. In: Metal Nanoparticles in Pharma (eds. M. Rai and R. Shegokar). Springer International Publishing.

40 Caizer, C., Dehelean, C., Coricovac, D.E. et al. (2020). Magnetic nanoparticles nanoformulations for alternative therapy of cancer by magnetic/superparamagnetic hyperthermia. In: Nanoformulations in Human Health (eds. S. Talegaonkar and M. Rai). Cham: Springer.

41 Chomoucka, J., Drbohlavova, J., Huska, D. et al. (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research 62 (2): 144–149.

42 Coey, J.M.D. and Khalafalla, D. (1972). Superparamagnetic γ‐Fe2O3. Physica Status Solidi 11: 229–241.

43  Cullity, B.D. and Graham, C.D. (2009). Introduction to Magnetic Materials, 2e. Hoboken, NJ: Wiley.

44 Déjardin, J.L., Vernay, F., and Kachkachi, H. (2020). Specific absorption rate of magnetic nanoparticles: nonlinear AC susceptibility. Journal of Applied Physics 128: 143901.

45 Dillon, J.F. (1962). Magnetic properties I. In: Landolt‐Börnstein, Vol. II(9): 50–51. Berlin: Springer‐Verlag.

46 Enpuku, K., Hotta, M., Nakahodo, A., and Physica, C. (2001). High‐Tc SQUID system for biological immunoassays. Physica C: Superconductivity 357–360: 1462–1465.

47 Ferguson, R.M., Minard, K.R., Khandhar, A.P., and Krishnan, K.M. (2011). Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Medical Physics 38: 1619.

48 Fortin‐Ripoche, J.P., Martina, M.S., Gazeau, F. et al. (2006). Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239 (2): 1–20.

49 Gao, Y., Liu, Y., Xu, C., and Cai, W. (2014). Magnetic Nanoparticles for Biomedical Applications: From Diagnosis to Treatment to Regeneration. London: Springer‐Verlag.

50 Garcia, J. and Subias, G.J. (2004). The Verwey transition – a new perspective. Journal of Physics: Condensed Matter 16: R145–R178.

51 Goya, G., Berquo, T., Fonseca, F., and Morales, M. (2003). Static and dynamic magnetic properties of spherical magnetite nanoparticles. Journal of Applied Physics 94: 3520.

52 Grimm, J., Perez, J.M., Josephson, L., and Weissleder, R. (2004). Novel nanosensors for rapid analysis of telomerase activity. Cancer. Res. 64: 639–643.

53 Guardia, P., Batlle‐Brugal, B., Roca, A. et al. (2007). Surfactant effects in magnetite nanoparticles of controlled size. Journal of Magnetism and Magnetic Materials 316: e756.

54 Guo, T., Lin, M., Huang, J. et al. (2018). The recent advances of magnetic nanoparticles in medicine. Journal of Nanomaterials 7805147: 1–8.

55 Hassen, W.M., Chaix, C., Abdelghani, A. et al. (2008). An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensors and Actuators B: Chemical 134: 755–760.

56 Hendriksen, P.V., Linderoth, S., and Lindgard, P.A. (1992). Finite‐size effects in the magnetic properties of ferromagnetic clusters. Journal of Magnetism and Magnetic Materials 104–107: 1577–1579.

57 Hendriksen, P.V., Linderoth, S., and Lindgard, P.A. (1993). Finite‐size modifications of the magnetic properties of clusters. Physical Review B 48: 7259.

58 Herpin, A. (1968). Theorie du Magnetism. Paris: Universitaires de France.

59 Hilty, F.M., Arnold, M., Hilbe, M. et al. (2010). Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature Nanotechnology 5 (5): 374–380.

60 Jacobs, I.S. and Bean, C.P. (1963). Fine particles; superparamagnetism. In: Magnetism III (eds. G.T. Rado and H. Suhl). New York: Academic Press.

61 Jain, R.K. (2001). Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews 46: 149–168.

62 Jangpatarapongsa, K., Polpanich, D., Yamkamon, V. et al. (2011). DNA detection of chronic myelogenous leukemia by magnetic nanoparticles. Analyst 136 (2): 354–358.

63 Kaittanis, C., Santra, S., and Perez, J.M. (2009). Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J. Amer. Chem. Soc. 131 (35): 12780–12791. doi: 10.1021/ja9041077.

64 Kim, C., Lee, Y., Kim, J.S. et al. (2010). Thermally triggered cellular uptakeof quantum dots immobilized with poly(N‐isopropylacrylamide) and cell penetrating peptide. Langmuir: The ACS Journal of Surfaces and Colloids 26 (18): 14965–14969.

65 Kim, S., Lewis, B., Steiner, M. et al. (2016). Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media & Molecular Imaging 11 (1): 55–64.

66 Kittel, C. (1946). Theory of the structure of ferromagnetic domains in films and small particles. Physics Review 70: 965.

67  Kneller, E. (1962). Ferromagnetismus. Berlin: Springer.

68 Kodama, R.H. (1999). Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 200: 359–372.

69 Kodama, R.H., Berkowitz, A.E., McNiff, E.J., and Foner, S. (1996). Surface spin disorder in NiFe2O4 nanoparticles. Physical Review Letters 77: 394.

70 Kojima, H. (1982). Fundamental properties of hexagonal ferrites with magnetoplumbite structure. In: Handbook of Ferromagnetic Materials (ed. E.P. Wohlfarth). North‐Holland, Amsterdam: Elsevier.

71 Langevin, P. (1905). Magnétisme et thérie des electrons. Annales de chimie et de physique 5: 70–127.

72 Laurent, S., Forge, D., Port, M. et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 108 (6): 2064–2110.

73 Li, J., Yang, J., Wei, P. et al. (2015). Hyaluronic acid‐midified Fe3O4 @Au core/shell nanostar for multifunctional imaging and photothermal therapy of tumors. Biomaterials 38: 10–21.

74 Linderoth, S., Balcells, L., Labarta, A. et al. (1993). Magnetization and Mössbauer studies of ultrafine Fe‐C particles. Journal of Magnetism and Magnetic Materials 124: 269–276.

75 Liu, Y. and Zhang, N. (2012). Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials 33: 5363–5375.

76 Ma, C., Wang, W., Yang, Q. et al. (2011). Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosensors & Bioelectronics 26 (7): 3309–3312.

77 Martina, M.S., Fortin, J.P., Ménager, C. et al. (2005). Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Journal of the American Chemical Society 127: 10676–10685.

78 McBain, S.C., Yiu, H.H., and Dobson, J. (2008). Magnetic nanoparticles for gene and drug delivery. International Journal of Nanomedicine 3: 169–180.

79 Mody, V.V., Singh, A., and Wesley, B. (2013). Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine 5 (1): 11–21.

80 Mok, H. and Zhang, M. (2013). Superparamagnetic iron oxide nanoparticle‐based delivery systems for biotherapeutics. Expert Opinion on Drug Delivery 10 (1): 73–87.

81 Morais, P.C., Teixeira, C.B., Neto, K.S. et al. (2000). Magnetic behavior of zero‐field‐frozen ferrofluid. Solid State Communications 114: 59–62.

82 Néel, L. (1949). Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Annales de Geophysique 5: 99.

83 Néel, L. (1954). Anisotropie superficielle et surstructures d'orientation magnétique. Journal De Physique Et Le Radium 15: 225.

84 Niemirowicz, K., Markiewicz, K.H., Wilczewska, A.Z. and Car, H. (2012). Magnetic nanoparticles as new diagnostic tools in medicine. Adv. Med. Sci. 57( 2): 196–207. doi: 10.2478/v10039-012-0031-9. PMID: 23154427.

85 Niemirowicz, K., Prokop, I., Wilczewska, A. et al. (2015). Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL‐37 peptide against colon cancer cells. International Journal of Nanomedicine 10: 3843–3853.

86 Nogues, J., Sort, J., Langlais, V. et al. (2005). Exchange bias in nanostructures. Physics Reports 422: 65–117.

87 O’Grady, K. and Bradbury, A. (1994). Particle size analysis in ferrofluids. Journal of Magnetism and Magnetic Materials 39: 91–94.

88 Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J. (2003). Applications of magnetic nano‐particles in biomedicine. Journal of Physics D: Applied Physics 36 (13): R167–R181.

89 Park, J., An, K., Hwang, Y. et al. (2004). Ultra‐large‐scale syntheses of monodisperse nanocrystals. Nature Materials 3: 891.

90 Parkinson, G.S., Diebold, U., Jinke Tang, J., and Leszek Malkinski, L. (2012). Tailoring the interface properties of magnetite for spintronics. In: Advanced Magnetic Materials (ed. L. Leszek Malkinski). InTech.

91  Peddis, D., Laureti, S., Mansilla, M.V. et al. (2009). Exchange bias in CoFe2O4/NiO nanocomposites. Superlattices and Microstructures 46: 125–219.

92 Reeves, D.B. and Weaver, J.B. (2014). Approaches for modeling magnetic nanoparticle dynamics. Critical Reviews in Biomedical Engineering 42 (1): 85–93.

93 Riviere, C., Roux, S., Tillement, O. et al. (2006). Nanosystems for medical applications: biological detection, drug delivery, diagnostic and therapy. Annales de Chimie. Science des Materiaux (Paris) 31 (3): 351–367.

94 Rosensweig, R.E. (1985). Ferrohydrodynamics. Cambridge: Cambridge University Press.

95 Rosensweig, R.E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials 252: 370–374.

96 Sayhi, M., Ouerghi, O., Belgacem, K. et al. (2018). Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization‐free screen printed carbon microelectrode. Biosensors & Bioelectronics 107: 170–177.

97 Saylan, Y., Erdem, O., Ünal, S., and Denizli, A. (2019). An alternative medical diagnosis method: biosensors for virus detection. Biosensors 9: 65.

98 Shan, Z., Wu, Q., Wang, X. et al. (2010). Bacteria capture, lysate clearance, and plasmid DNA extraction using pH‐sensitive multifunctional magnetic nanoparticles. Analytical Biochemistry 398 (1): 120–122.

99 Shokrollahi, H., Khorramdin, A., and Isapour, G. (2014). Magnetic resonance imaging by using nano‐magnetic particles. Journal of Magnetism and Magnetic Materials 369 (11): 176–183.

100 Smit, J. and Wijin, H.P.J. (1961). Les Ferites. Paris: Bibl. Tehn. Philips.

101 Sun, C., Lee, J.S., and Zhang, M.Q. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews 60 (11): 1252–1265.

102 Sung, H.W.F. and Rudowicz, C. (2003). Physics behind the magnetic hysteresis loop – a survey of misconceptions in magnetism literature. Journal of Magnetism and Magnetic Materials 260 (1–2): 250–260.

103 Vargas, J., Lima, E. Jr., Zysler, R. et al. (2008). Effective anisotropy field variation of magnetite nanoparticles with size reduction. European Physical Journal B 64: 211.

104 Vassiliou, J.K., Mehrotra, V., Russell, M.W., and Giannelis, E.P. (1993). Magnetic and optical properties of γ‐Fe2O3 nanocrystals. Journal of Applied Physics 73: 5109–5116.

105 Veiseh, O., Gunn, J.W., Kievit, F.M. et al. (2009). Inhibition of tumor‐cell invasion with chlorotoxin‐bound superparamagnetic nanoparticles. Small (Weinheim and der Bergstrasse Germany) 5 (2): 256–264.

106 Vonsovskii, S.V. (1974). Magnetism. New York: Wiley.

107 Wells, J., Kazakova, O., Posth, O. et al. (2017). Standardisation of magnetic nanoparticles in liquid suspension. Journal of Physics D: Applied Physics 50: 383003.

108 White, M.A., Johnson, J.A., Koberstein, J.T., and Turro, N.J. (2006). Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. Journal of the American Chemical Society 128 (35): 11356–11357.

109 Wijn, H.P.J. (1986). Magnetic proprieties of metals. In: Landolt‐Börnstein, vol. III/19a. Heidelberg: Springer‐Verlag.

110 Wu, K., Tu, L., Su, D., and Wang, J.P. (2017). Magnetic dynamics of ferrofluids: mathematical models and experimental investigations. Journal of Physics D: Applied Physics 50 (8): 085005.

111 Xu, C. and Sun, S. (2012). New forms of superparamagnetic nanoparticles for biomedical applications. Advanced Drug Delivery Reviews 65 https://doi.org/10.1016/j.addr.2012.10.008.

112 Yamauchi, J. (2008). Fundamentals of magnetism. In: Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science (eds. G.I. Likhtenshtein, J. Yamauchi, S. Nakatsuji, et al.). Wiley.

113 Zhang, L., Papaefthymiou, G.C., Ziolo, R.F., and Ying, J.Y. (1997). Novel γ‐Fe2O3/SiO2 magnetic nanocomposites via sol‐gel matrix‐mediated synthesis. Nano Structured Materials 9: 185–188.

Magnetic Nanoparticles in Human Health and Medicine

Подняться наверх