Читать книгу Magnetic Nanoparticles in Human Health and Medicine - Группа авторов - Страница 36

References

Оглавление

1 Alphandéry, E., Faure, S., Raison, L. et al. (2011). Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. The Journal of Physical Chemistry C 115 (1): 18–22.

2 Arruebo, M., Fernández‐Pacheco, R., Ibarra, M.R., and Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2 (3): 22–32.

3 Bae, K.H., Park, M., Do, M.J. et al. (2012). Chitosan oligosaccharide‐stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6 (6): 5266–5273.

4 Baronzio, G.F. and Hager, E.D. (2006). Hyperthermia in Cancer Treatment: A Primer. Boston, MA: Springer US.

5 Bauer, L.M., Situ, S.F., Griswold, M.A., and Samia, A.C.S. (2016). High‐performance iron oxide nanoparticles for magnetic particle imaging – guided hyperthermia (hMPI). Nanoscale 8 (24): 12162–12169.

6 Bhattacharjee, H., Balabathula, P., and Wood, G.C. (2010). Targeted nanoparticulate drug‐delivery systems for treatment of solid tumors: a review. Therapeutic Delivery 1 (5): 713–734.

7 Blanco‐Andujar, C., Walter, A., Cotin, G. et al. (2016). Design of iron oxide‐based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11 (14): 1889–1910.

8 Bulte, J.W.M. (2019). Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Advanced Drug Delivery Reviews 138: 293–301.

9 Carrey, J., Mehdaoui, B., and Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single‐domain nanoparticles: application to magnetic hyperthermia optimization. Journal of Applied Physics 109 (8): 083921.

10 Cavaliere, R., Ciocatto, E.C., Giovanella, B.C. et al. (1967). Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer 20 (9): 1351–1381.

11 Chen, R., Christiansen, M.G., and Anikeeva, P. (2013). Maximizing hysteretic losses in magnetic ferrite nanoparticles via model‐driven synthesis and materials optimization. ACS Nano 7 (10): 8990–9000.

12 Cherukuri, P., Glazer, E.S., and Curley, S.A. (2010). Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 62 (3): 339–345.

13  Chicheł, A., Skowronek, J., Kubaszewska, M., and Kanikowski, M. (2007). Hyperthermia – description of a method and a review of clinical applications. Reports of Practical Oncology & Radiotherapy 12 (5): 267–275.

14 Colombo, M., Carregal‐Romero, S., Casula, M.F. et al. (2012). Biological applications of magnetic nanoparticles. Chemical Society Reviews 41 (11): 4306.

15 Coral, D.F., Mendoza Zélis, P., Marciello, M. et al. (2016). Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32 (5): 1201–1213.

16 Cypriano, J., Werckmann, J., Vargas, G. et al. (2019). Uptake and persistence of bacterial magnetite magnetosomes in a mammalian cell line: implications for medical and biotechnological applications (Y.K. Mishra, ed.). PLoS One 14 (4): e0215657.

17 Das, R., Alonso, J., Nemati Porshokouh, Z. et al. (2016). Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. The Journal of Physical Chemistry C 120 (18): 10086–10093.

18 Dias, C.S.B., Hanchuk, T.D.M., Wender, H. et al. (2017). Shape tailored magnetic nanorings for intracellular hyperthermia cancer therapy. Scientific Reports 7 (1): 14843.

19 Elsayed, W.E.M., Al‐Hazmi, F.S., Memesh, L.S., and Bronstein, L.M. (2017). A novel approach for rapid green synthesis of nearly mono‐disperse iron oxide magnetic nanocubes with remarkable surface magnetic anisotropy density for enhancing hyperthermia performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529: 239–245.

20 Falk, M.H. and Issels, R.D. (2001). Hyperthermia in oncology. International Journal of Hyperthermia 17 (1): 1–18.

21 Fortin, J.P., Wilhelm, C., Servais, J. et al. (2007). Size‐sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society 129 (9): 2628–2635.

22 Gandia, D., Gandarias, L., Rodrigo, I. et al. (2019). Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents. Small 15 (41): 1902626.

23 Gavilán, H., Sánchez, E.H., Brollo, M.E.F. et al. (2017). Formation mechanism of maghemite nanoflowers synthesized by a polyol‐mediated process. ACS Omega 2 (10): 7172–7184.

24 Gazeau, F., Lévy, M., and Wilhelm, C. (2008). Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3 (6): 831–844.

25 Geng, S., Yang, H., Ren, X. et al. (2016). Anisotropic magnetite nanorods for enhanced magnetic hyperthermia. Chemistry – An Asian Journal 11 (21): 2996–3000.

26 Gleich, B. and Weizenecker, J. (2005). Tomographic imaging using the nonlinear response of magnetic particles. Nature 435 (7046): 1214–1217.

27 Glöckl, G., Hergt, R., Zeisberger, M. et al. (2006). The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. Journal of Physics: Condensed Matter 18 (38): S2935–S2949.

28 Gonzales‐Weimuller, M., Zeisberger, M., and Krishnan, K.M. (2009). Size‐dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials 321 (13): 1947–1950.

29 Guardia, P., Di Corato, R., Lartigue, L. et al. (2012). Water‐soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6 (4): 3080–3091.

30 Guardia, P., Riedinger, A., Nitti, S. et al. (2014). One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. Journal of Materials Chemistry B 2 (28): 4426.

31 Guardia, P., Nitti, S., Materia, M.E. et al. (2017). Gold–iron oxide dimers for magnetic hyperthermia: the key role of chloride ions in the synthesis to boost the heating efficiency. Journal of Materials Chemistry B 5 (24): 4587–4594.

32  Hergt, R. and Dutz, S. (2007). Magnetic particle hyperthermia – biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials 311 (1): 187–192.

33 Hergt, R., Hiergeist, R., Zeisberger, M. et al. (2005). Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. Journal of Magnetism and Magnetic Materials 293 (1): 80–86.

34 Hilger, I., Hergt, R., and Kaiser, W.A. (2005). Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proceedings: Nanobiotechnology 152 (1): 33.

35 Hugounenq, P., Levy, M., Alloyeau, D. et al. (2012). Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. The Journal of Physical Chemistry C 116 (29): 15702–15712.

36 Iacovita, C., Stiufiuc, R., Radu, T. et al. (2015). Polyethylene Glycol‐Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power. Nanoscale Research Letters 10 (1): 391.

37 Iacovita, C., Florea, A., Dudric, R. et al. (2016). Small versus large iron oxide magnetic nanoparticles: hyperthermia and cell uptake properties. Molecules 21 (10): 1357.

38 Iacovita, C., Fizesan, I., Pop, A. et al. (2020). In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process. Pharmaceutics 12 (5): 424.

39 Jain, R.K. and Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews. Clinical Oncology 7 (11): 653–664.

40 Jeun, M., Lee, S., Kyeong Kang, J. et al. (2012). Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Applied Physics Letters 100 (9): 092406.

41 Jiang, C., Leung, C.W., and Pong, P.W.T. (2016). Magnetic‐field‐assisted assembly of anisotropic superstructures by iron oxide nanoparticles and their enhanced magnetism. Nanoscale Research Letters 11 (1): 189.

42 Jordan, A., Scholz, R., Wust, P. et al. (1999). Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials 201 (1–3): 413–419.

43 Kerr, J.F.R., Winterford, C.M., and Harmon, B.V. (1994). Apoptosis. Its significance in cancer and cancer therapy. Cancer 73 (8): 2013–2026.

44 Kostopoulou, A., Velu, S.K.P., Thangavel, K. et al. (2014). Colloidal assemblies of oriented maghemite nanocrystals and their NMR relaxometric properties. Dalton Transactions 43 (22): 8395–8404.

45 Laurent, S., Forge, D., Port, M. et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 108 (6): 2064–2110.

46 Lévy, M., Wilhelm, C., Siaugue, J.‐M. et al. (2008). Magnetically induced hyperthermia: size‐dependent heating power of γ‐Fe2O3 nanoparticles. Journal of Physics: Condensed Matter 20 (20): 204133.

47 Liu, X.L., Yang, Y., Ng, C.T. et al. (2012). Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. Journal of Materials Chemistry 22 (17): 8235.

48 Liu, X.L., Yang, Y., Ng, C.T. et al. (2015). Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Advanced Materials 27 (11): 1939–1944.

49 Lu, A.‐H., Salabas, E.L., and Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition 46 (8): 1222–1244.

50 Lv, Y., Yang, Y., Fang, J. et al. (2015). Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles. RSC Advances 5 (94): 76764–76771.

51 Ma, M., Zhang, Y., Guo, Z., and Gu, N. (2013). Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction. Nanoscale Research Letters 8 (1): 16.

52 Maier‐Hauff, K., Ulrich, F., Nestler, D. et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron‐oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro‐Oncology 103 (2): 317–324.

53  Mamiya, H. and Jeyadevan, B. (2019). Design criteria of thermal seeds for magnetic fluid hyperthermia – from magnetic physics point of view. In: Nanomaterials for Magnetic and Optical Hyperthermia Applications (eds. R.M. Fratila and J.M. De La Fuent), 13–39. Elsevier.

54 Martins, J.P., das Neves, J., de la Fuente, M. et al. (2020). The solid progress of nanomedicine. Drug Delivery and Translational Research 10 (3): 726–729.

55 Minotti, G., Menna, P., Salvatorelli, E. et al. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews 56 (2): 185–229.

56 Mohammad, F., Balaji, G., Weber, A. et al. (2010). Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles. The Journal of Physical Chemistry C 114 (45): 19194–19201.

57 Mohapatra, J., Mitra, A., Aslam, M., and Bahadur, D. (2015). Octahedral shaped Fe3O4 nanoparticles with enhanced specific absorption rate and R2 relaxivity. IEEE Transactions on Magnetics 51 (11): 1–3.

58 Mohapatra, J., Zeng, F., Elkins, K. et al. (2018). Size‐dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: scaling laws across the superparamagnetic size. Physical Chemistry Chemical Physics 20 (18): 12879–12887.

59 Mornet, S., Vasseur, S., Grasset, F., and Duguet, E. (2004). Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry 14 (14): 2161.

60 Motomura, K., Ishitobi, M., Komoike, Y. et al. (2011). SPIO‐Enhanced magnetic resonance imaging for the detection of metastases in sentinel nodes localized by computed tomography lymphography in patients with breast cancer. Annals of Surgical Oncology 18 (12): 3422–3429.

61 Moyer, H.R. and Delman, K.A. (2008). The role of hyperthermia in optimizing tumor response to regional therapy. International Journal of Hyperthermia 24 (3): 251–261.

62 Muela, A., Muñoz, D., Martín‐Rodríguez, R. et al. (2016). Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach. The Journal of Physical Chemistry C 120 (42): 24437–24448.

63 Muller, R.N., Vander Elst, L., Roch, A. et al. (2005). Relaxation by metal‐containing nanosystems. In: Advances in Inorganic Chemistry (ed. R. van Eldik), 239–292.

64 Müller, R., Dutz, S., Neeb, A. et al. (2013). Magnetic heating effect of nanoparticles with different sizes and size distributions. Journal of Magnetism and Magnetic Materials 328: 80–85.

65 Myrovali, E., Maniotis, N., Makridis, A. et al. (2016). Arrangement at the nanoscale: effect on magnetic particle hyperthermia. Scientific Reports 6 (1): 37934.

66 Nahrendorf, M., Zhang, H., Hembrador, S. et al. (2008). Nanoparticle PET‐CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117 (3): 379–387.

67 Nedelcu, G. (2008). Magnetic nanoparticles impact on tumoral cells in the treatment by magnetic fluid hyperthermia. Digest Journal of Nanomaterials and Biostructures 3 (3): 103–107.

68 Nemati, Z., Alonso, J., Martinez, L.M. et al. (2016). Enhanced magnetic hyperthermia in iron oxide nano‐octopods: size and anisotropy effects. The Journal of Physical Chemistry C 120 (15): 8370–8379.

69 Nemati, Z., Salili, S.M., Alonso, J. et al. (2017). Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: does size matter? Journal of Alloys and Compounds 714: 709–714.

70 Nemati, Z., Alonso, J., Rodrigo, I. et al. (2018). Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. The Journal of Physical Chemistry C 122 (4): 2367–2381.

71 Noh, S., Moon, S.H., Shin, T.‐H. et al. (2017). Recent advances of magneto‐thermal capabilities of nanoparticles: from design principles to biomedical applications. Nano Today 13: 61–76.

72 Ou, Y.‐C., Wen, X., and Bardhan, R. (2020). Cancer immunoimaging with smart nanoparticles. Trends in Biotechnology 38 (4): 388–403.

73 Périgo, E.A., Hemery, G., Sandre, O. et al. (2015). Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2 (4): 041302.

74  Piñeiro, Y., Vargas, Z., Rivas, J., and López‐Quintela, M.A. (2015). Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. European Journal of Inorganic Chemistry 2015 (27): 4495–4509.

75 Prabhu, N.N. (2016). Magnetosomes: the bionanomagnets and its potential use in biomedical applications. Journal of Nano Research 3 (3): 00057.

76 Rahmer, J., Wirtz, D., Bontus, C. et al. (2017). Interactive magnetic catheter steering with 3‐D real‐time feedback using multi‐color magnetic particle imaging. IEEE Transactions on Medical Imaging 36 (7): 1449–1456.

77 Reddy, L.H., Arias, J.L., Nicolas, J., and Couvreur, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews 112 (11): 5818–5878.

78 Sakellari, D., Brintakis, K., Kostopoulou, A. et al. (2016). Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators. Materials Science and Engineering: C 58: 187–193.

79 Salas, G., Camarero, J., Cabrera, D. et al. (2014). Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. The Journal of Physical Chemistry C 118 (34): 19985–19994.

80 Salgueiriño‐Maceira, V., Correa‐Duarte, M.A., Spasova, M. et al. (2006). Composite silica spheres with magnetic and luminescent functionalities. Advanced Functional Materials 16 (4): 509–514.

81 Serantes, D., Baldomir, D., Martinez‐Boubeta, C. et al. (2010). Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. Journal of Applied Physics 108 (7): 073918.

82 Serantes, D., Simeonidis, K., Angelakeris, M. et al. (2014). Multiplying magnetic hyperthermia response by nanoparticle assembling. The Journal of Physical Chemistry C 118 (11): 5927–5934.

83 Song, G., Chen, M., Zhang, Y. et al. (2018). Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Letters 18 (1): 182–189.

84 Spirou, S., Basini, M., Lascialfari, A. et al. (2018). Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials 8 (6): 401.

85 Stiufiuc, R., Iacovita, C., Stiufiuc, G. et al. (2015). A new class of pegylated plasmonic liposomes: synthesis and characterization. Journal of Colloid and Interface Science 437: 17–23.

86 Ştiufiuc, G.F., Nițică, Ş., Toma, V. et al. (2019). Synergistical use of electrostatic and hydrophobic interactions for the synthesis of a new class of multifunctional nanohybrids: plasmonic magneto‐liposomes. Nanomaterials 9 (11): 1623.

87 Tay, Z.W., Chandrasekharan, P., Chiu‐Lam, A. et al. (2018). Magnetic particle imaging‐guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 12 (4): 3699–3713.

88 Tong, S., Quinto, C.A., Zhang, L. et al. (2017). Size‐dependent Heating of magnetic iron oxide nanoparticles. ACS Nano 11 (7): 6808–6816.

89 Tong, S., Zhu, H., and Bao, G. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. Materials Today 31: 86–99.

90 Toulemon, D., Rastei, M.V., Schmool, D. et al. (2016). Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nanoparticles in chains. Advanced Functional Materials 26 (15): 2454–2462.

91 Tu, L., Wu, K., Klein, T., and Wang, J.‐P. (2014). Magnetic nanoparticles colourization by a mixing‐frequency method. Journal of Physics D: Applied Physics 47 (15): 155001.

92 de Vries, I.J.M., Lesterhuis, W.J., Barentsz, J.O. et al. (2005). Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnology 23 (11): 1407–1413.

93 Weissleder, R., Elizondo, G., Wittenberg, J. et al. (1990). Ultrasmall superparamagnetic iron oxide: characterition of a new class of contrast agents for MR imaging. Radiology 175 (2): 489–493.

94  Wilczewska, A.Z., Niemirowicz, K., Markiewicz, K.H., and Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports 64 (5): 1020–1037.

95 Wu, L., Mendoza‐Garcia, A., Li, Q., and Sun, S. (2016). Organic phase synthesis of magnetic nanoparticles and their applications. Chemical Reviews 116 (18): 10473–10512.

96 Wu, K., Su, D., Saha, R. et al. (2019). Magnetic particle spectroscopy‐based bioassays: methods, applications, advances, and future opportunities. Journal of Physics D: Applied Physics 52 (17): 173001.

97 Xiao, N., Gu, W., Wang, H. et al. (2014). T1–T2 dual‐modal MRI of brain gliomas using PEGylated Gd‐doped iron oxide nanoparticles. Journal of Colloid and Interface Science 417: 159–165.

98 Yang, M., Gao, L., Liu, K. et al. (2015a). Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 131: 661–665.

99 Yang, Y., Liu, X., Lv, Y. et al. (2015b). Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Advanced Functional Materials 25 (5): 812–820.

100 Yu, E.Y., Bishop, M., Zheng, B. et al. (2017). Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Letters 17 (3): 1648–1654.

101 Zheng, B., von See, M.P., Yu, E. et al. (2016). Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6 (3): 291–301.

Magnetic Nanoparticles in Human Health and Medicine

Подняться наверх