Читать книгу Nanotechnology in Plant Growth Promotion and Protection - Группа авторов - Страница 32

References

Оглавление

1 Abdel‐Aziz, H.M.M., Hasaneen, M.N.A., and Omer, A.M. (2016). Nano chitosan‐NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research 14 (1): e0902.

2 Abdel‐Aziz, H.M.M., Hasaneen, M.N.A., and Omer, A.M. (2019). Impact of engineered nanomaterials either alone or loaded with NPK on growth and productivity of French bean plants: seed priming vs foliar application. South African Journal of Botany 125: 102–108.

3 Adhikari, T., Kundu, S., Biswas, A.K. et al. (2015). Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. Journal of Plant Nutrition 38 (10): 1505–1515.

4 Adhikari, T., Sarkar, D., Mashayekhi, H., and Xing, B. (2016). Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. Journal of Plant Nutrition 39 (1): 99–115.

5 Adisa, I.O., Reddy Pullagurala, V.L., Peralta‐Videa, J.R. et al. (2019). Recent advances in nano‐enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science: Nano 6: 2002–2030.

6 Agrahari, S. and Dubey, A. (2020). Nanoparticles in plant growth and development. In: Biogenic Nano‐Particles and Their Use in Agro‐Ecosystems (eds. M. Ghorbanpour, P. Bhargava, A. Varma and D. Choudhary), 9–37. Singapore: Springer.

7 Ali, M.A., Rehman, I., Iqbal, A. et al. (2014). Nanotechnology, a new frontier in agriculture. Advancements in Life Sciences 1 (3): 129–138.

8 Alidoust, D. and Isoda, A. (2013). Effect of γ‐Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiologiae Plantarum 35: 3365–3375.

9 Alidoust, D. and Isoda, A. (2014). Phytotoxicity assessment of γ‐Fe2O3 nanoparticles on root elongation and growth of rice plant. Environmental Earth Sciences 71: 5173–5182.

10 Alkubaisi, N.A.O., Aref, N.M.M.A., and Hendi, A.A. (2015). Method of inhibiting plant virus using gold nanoparticles. US Patents US9198434B1, 1 December 2015.

11 Asghar, M.A., Zahir, E., Shahid, S.M. et al. (2018). Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B 1 adsorption activity. LWT 90: 98–107.

12 Bajpai, A., Jadhav, K., Muthukumar, M. et al. (2020). Use of nanotechnology in quality improvement of economically important agricultural crops. In: Biogenic Nano‐Particles and Their Use in Agro‐Ecosystems (eds. M. Ghorbanpour, P. Bhargava, A. Varma and D. Choudhary), 39–57. Singapore: Springer.

13 Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15: 15–22.

14 Davarpanah, S., Tehranifar, A., Davarynejad, G. et al. (2016). Effects of foliar applications of zinc and boron nano‐fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae 210: 57–64.

15 Deepa, M., Sudhakar, P., Nagamadhuri, K.V. et al. (2015). First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Applied Nanoscience 5: 545–551.

16  Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N., and Makarian, H. (2014). Some physiological responses of black‐eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis 45 (4): 530–540.

17 Dimkpa, C.O., Bindraban, P.S., Fugice, J. et al. (2017a). Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development 37 (1): 5.

18 Dimkpa, C.O., White, J.C., Elmer, W.H., and Gardea‐Torresdey, J. (2017b). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of Agricultural and Food Chemistry 65 (39): 8552–8559.

19 Dimkpa, C., Singh, U., Adisa, I. et al. (2018). Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy 8 (9): 158.

20 Dimkpa, C.O., Singh, U., Bindraban, P.S. et al. (2019). Addition omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size‐specific response of soybean to micronutrients exposure. Science of the Total Environment 665: 606.

21 Ditta, A. and Arshad, M. (2016). Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnology Reviews 5: 209–229.

22 El‐bendary, M.H. and El‐Helaly, A.A. (2013). First record nanotechnology in agricultural: silica nano‐ particles a potential new insecticide for pest control. Applied Science Reports 4: 241–246.

23 Elbeshehy, E.K.F., Elazzazy, A.M., and Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Frontiers in Microbiology 6: 453.

24 Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., and Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146: 101–106.

25 Feng, Y., Cui, X., He, S. et al. (2013). The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environmental Science & Technology 47: 9496–9504.

26 Ghafari, H. and Razmjoo, J. (2013). Effect of foliar application of nano‐iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. International Journal of Agronomy and Plant Production 4: 2997–3003.

27 Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R. et al. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science & Technology 47: 10645–10652.

28 Gogos, A., Knauer, K., and Bucheli, T.D. (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry 60: 9781–9792.

29 Ha, N.M.C., Nguyen, T.H., Wang, S., and Nguyen, A.D. (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates 45: 51–63.

30 Hasaneen, M.N.A., Abdel‐Aziz, H.M.M., and Omer, A.M. (2016). Effect of using two different types of engineered nanomaterials on the growth and antioxidant enzymes of French bean plants. Journal of Plant Production Mansoura University 9 (7): 1021–1025.

31 Heikal, Y.M. and Abdel‐Aziz, H.M.M. (2020). Biogenic nanomaterials and their applications in agriculture. In: Biogenic Nanoparticles and Their Use in Agro‐Ecosystems (eds. M. Ghorbanpour, P. Bhargava, A. Varma and D.K. Choudhary), 489–514. Singapore: Springer Nature.

32 Hong, F., Yang, F., Liu, C. et al. (2005). Influences of nano‐TiO2 on the chloroplast aging of spinach under light. Biological Trace Element Research 104: 249–260.

33  Hu, J., Guo, H.Y., Li, J.L. et al. (2017). Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental Pollution 221: 199–208.

34 Jain, D. and Kothari, S. (2014). Green synthesis of silver nanoparticles and their application in plant virus inhibition. Journal of Mycology and Plant Pathology 44: 21.

35 Jampílek, J. and Král'ová, K. (2017). Nanopesticides: preparation, targeting and controlled release. In: Nanotechnology in Food Industry, New Pesticides and Soil Sensors, vol. 10(ed. A.M. Grumezescu), 81–127. London: Academic Press & Elsevier.

36 Kah, M. and Hofmann, T. (2014). Nanopesticide research: current trends and future priorities. Environment International 63: 224–235.

37 Kashyap, P.L., Xiang, X., and Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77: 36–51.

38 Khatami, M., Sharifi, I., Nobre, M.A. et al. (2018). Waste‐grass‐mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chemistry Letters and Reviews 11 (2): 125–134.

39 Khodakovskaya, M.V., De Silva, K., Biris, A.S. et al. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6 (3): 2128–2135.

40 Kim, D.Y., Kadam, A., Shinde, S. et al. (2018). Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. Journal of the Science of Food and Agriculture 98: 849–864.

41 Kottegoda, N., Sandaruwan, C., Priyadarshana, G. et al. (2017). Urea‐hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11: 1214–1221.

42 Krishnaraj, C., Ramachandran, R., Mohan, K., and Kalaichelvan, P. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 93: 95–99.

43 Kumar, S., Bhanjana, G., Sharma, A. et al. (2014). Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate Polymers 101: 1061–1067.

44 León‐Silva, S., Fernández‐Luqueño, F., and López‐Valdez, F. (2018). Engineered nanoparticles: are they an inestimable achievement or a health and environmental concern? In: Agricultural Nanobiotechnology: Modern Agriculture for a Sustainable Future (eds. F. López‐Valdez and F. Fernández‐Luqueño), 183–212. Cham: Springer Nature.

45 Li, J., Chang, P.R., Huang, J. et al. (2013). Physiological effects of magnetic iron oxide nanoparticles towards watermelon. Journal of Nanoscience and Nanotechnology 13: 5561–5567.

46 Li, J., Hu, J., Ma, C. et al. (2016). Uptake, translocation and physiological effects of magnetic iron oxide (γ‐Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159: 326–334.

47 Liu, R. and Lal, R. (2015). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports 4: 5686.

48 Malerba, M. and Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences 17: 996.

49 Moghaddasi, S., Khoshgoftarmanesh, A.H., Karimzadeh, F., and Chaney, R.L. (2013). Preparation of nano‐particles from waste tire rubber and evaluation of their effectiveness as zinc source for cucumber in nutrient solution culture. Scientia Horticulturae 160: 398–403.

50 Mohamed, M.A. and Abd‐Elsalam, K.A. (2018). Nanoantimicrobials for plant pathogens control: potential applications and mechanistic aspects. In: Nanobiotechnology Applications in Plant Protection, Nanotechnology in the Life Sciences (eds. K. Abd‐Elsalam and R. Prasad), 87–109. Cham: Springer.

51 Mondal, K.K. and Mani, C. (2012). Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Annals of Microbiology 62 (2): 889–893.

52 Naderi, M.R. and Danesh‐Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences 5: 2229–2232.

53 Nair, P.M.G. (2018). Toxicological impact of carbon nanomaterials on plants. In: Nanotechnology, Food Security and Water Treatment, Environmental Chemistry for a Sustainable World (eds. K. Gothandam, S. Ranjan, N. Dasgupta, et al.), 163–183. Cham: Springer Nature.

54 Paret, M.L., Palmateer, A.J., and Knox, G.W. (2013a). Evaluation of a light‐activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. Horticultural Science 48 (2): 189–192.

55 Paret, M.L., Vallad, G.E., Averett, D.R. et al. (2013b). Photocatalysis: effect of light‐activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103 (3): 228–236.

56 Pradhan, S., Patra, P., Das, S. et al. (2013). Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environmental Science & Technology 47 (22): 13122–13131.

57 Raliya, R., Biswas, P., and Tarafdar, J. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports 5: 22–26.

58 Raliya, R., Saharan, V., Dimkpa, C., and Biswas, P. (2018). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66 (26): 6487–6503.

59 Rico, C.M., Lee, S.C., Rubenecia, R. et al. (2014). Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 62 (40): 9669–9675.

60 Rico, C.M., Barrios, A.C., Tan, W. et al. (2015). Physiological and biochemical response of soil‐grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environmental Science and Pollution Research 22 (14): 10551–10558.

61 Rui, M., Ma, C., Hao, Y. et al. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science 7: 815.

62 Sadeghi, R., Rodriguez, R.J., Yao, Y., and Kokini, J.L. (2017). Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annual Review of Food Science and Technology 8: 467–492.

63 Saharan, V., Sharma, G., Yadav, M. et al. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules 75: 346–353.

64 Saharan, V., Kumaraswamy, R.V., Choudhary, R.C. et al. (2016). Cu‐chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64 (31): 6148–6155.

65 Salem, N.M., Albanna, L.S., Awwad, A.M. et al. (2016a). Green synthesis of nano‐sized sulfur and its effect on plant growth. Journal of Agricultural Science 8 (1): 188–194.

66 Salem, N.M., Albanna, L.S., Abdeen, A.O. et al. (2016b). Sulfur nanoparticles improves root and shoot growth of tomato. Journal of Agricultural Science 8 (4): 179–185.

67  Sharonova, N.L., Yapparov, A.K., Khisamutdinov, N.S. et al. (2015). Nanostructured water‐phosphorite suspension is a new promising fertilizer. Nanotechnologies in Russia 10: 651–661.

68 Singh, M.D., Chirag, G., Patidar, O.P. et al. (2017). Nano‐fertilizers is a new way to increase nutrients use efficiency in crop production. International Journal of Agriculture Sciences 97: 3831–3833.

69 Song, G., Gao, Y., Wu, H. et al. (2012). Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environmental Toxicology and Chemistry 31: 2147–2152.

70 Subbaiah, L.V., Prasad, T.N.V.K.V., Krishna, T.G. et al. (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). Journal of Agricultural and Food Chemistry 64: 3778–3788.

71 Taha, R.A., Hassan, M.M., Ibrahim, E.A. et al. (2016). Carbon nanotubes impact on date palm in vitro cultures. Plant Cell, Tissue and Organ Culture 127 (2): 525–534.

72 Tarafdar, J., Raliya, R., Mahawar, H., and Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricutlural Research 3: 257–262.

73 Tiwari, M., Sharma, N.C., Fleischmann, P. et al. (2017). Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Frontiers in Plant Science 8: 633.

74 Tripathi, D.K., Singh, S., Singh, S. et al. (2017). An overview on manufactured nano‐particles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry 110: 2–12.

75 Van, S.N., Minh, H.D., and Anh, D.N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology 2 (4): 289–294.

76 Wang, W.‐N., Tarafdar, J.C., and Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of Nanoparticle Research 15: 1417.

77 White, J.C. and Gardea‐Torresdey, J. (2018). Achieving food security through the very small. Nature Nanotechnology 13: 627.

78 Worrall, E.A., Hamid, A., Mody, K.T. et al. (2018). Nanotechnology for plant disease management. Agronomy 8: 285.

79 Yassen, A., Abdallah, E., Gaballah, M., and Zaghloul, S. (2017). Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). International Journal of Agricultural Research 12: 130–135.

80 Yousefi, R. and Esna‐Ashari, M. (2017). The effect of micro‐and nanoparticles of silicon on concentration of macro‐and microelements and silicon content of strawberry plant in soilless culture conditions. Journal of Science and Technology of Greenhouse Culture 8 (1): 57–71.

81 Zahra, Z., Arshad, M., Rafique, R. et al. (2015). Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of Agricultural and Food Chemistry 63: 6876–6882.

82 Zhang, X., Davidson, E.A., Mauzerall, D.L. et al. (2015). Managing nitrogen for sustainable development. Nature 528: 51–59.

83  Zhu, H., Han, J., Xiao, J.Q., and Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring 10: 713–717.

84 Zulfiqar, F., Navarro, M., Ashraf, M. et al. (2019). Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Science 289: 110270.

Nanotechnology in Plant Growth Promotion and Protection

Подняться наверх