Читать книгу Handbook of Intelligent Computing and Optimization for Sustainable Development - Группа авторов - Страница 50

2.4.2.2 Implementation of the Algorithm

Оглавление

 • Sample Input: Each DNA solution representing (X(k), Y(k)) (here, the kth sample is taken) is mixed with the solution representing the corresponding kth weight molecular library tube, denoted by tk, so that the hybridization with the weight coefficient can occur. Prolongation reaction is performed with the solution of tube tk by using initial input sample as the primer sequence. Then, the solution is treated with excision enzyme to remove the single strands. The new tube is generated with the resultant strands.

 • Generation of DNA strands representing weight set: Again, is treated with restriction enzyme and gel electrophoresis is performed to remove shorter DNA strands. The filtered solution containing the longer strands is treated with ligase to perform coupled reaction. This reaction generates DNA strands representing the weight sum.(2.14)(2.15)

 • Gel Electrophoresis: Using the strand as probe, the output strands denoting “0” is extracted into the tube . Again, using the strand as probe, the output strands denoting “1” is extracted into the tube , and extract the DNA strands which output value is “1” into the tube . Gel electrophoresis is done with both of the tubes.

For the tube , DNA strands with length less than a specific threshold ∮ are retained and for the tube , the DNA strands with length greater than ∮ are retained. From this step, a series DNA strands presenting w1, w2, .…, wp are generated.

 • Performing Intersection to generate w: If p is even number, then the set w1, w2, .…, wp is divided into p/2 groups, intersection of each group is solved. If p is odd, then the set divided into (p/2 + 1) groups, and again the interaction for each group is solved. The remainder tube with no match tube directly takes part in the next cyclic grouping, till the last cycle there is one tube remain. If any DNA strand exists, then the intersection of w1, w2, .…, wp can be deduced.

 • The sequence of the strand can be read by performing sequencing.

 • Classification of the unknown input vector: Using the probe 5′ − wij − 3′ the DNA strands are extracted from the weight. The extracted strands are put into a new tube and it is mixed with the solution representing the unknown input vector. The first, second, and third steps are again performed using the solution. Using the strand as probe, the output strands denoting “0” is extracted. Again, using the strand as probe, the output strands denoting “1” is extracted.

Following these steps, the unknown input vector can be classified.

So far, we have developed neural model using short DNA sequences and replaced the mathematical aspect of ANN by the elementary operations of the DNA chemistry. In next section, we illustrate the DNA logic gates which are the basic of Boolean algebra. It is essential for the hands-on development of DNA computer.

Handbook of Intelligent Computing and Optimization for Sustainable Development

Подняться наверх