Читать книгу Genome Editing in Drug Discovery - Группа авторов - Страница 52

References

Оглавление

1 Abudayyeh, O.O., Gootenberg, J.S., Konermann, S. et al. (2016). C2c2 is a single‐component programmable RNA‐guided RNA‐targeting CRISPR effector. Science 353: aaf5573.

2 Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P. et al. (2017). RNA targeting with CRISPR‐Cas13. Nature 550: 280–284.

3 Akcakaya, P., Bobbin, M.L., Guo, J.A. et al. (2018). in vivo CRISPR editing with no detectable genome‐wide off‐target mutations. Nature 561: 416–419.

4 Aliaga Goltsman, D.S., Alexander, L.M., Devoto, A.E. et al. (2020). Novel Type V‐A CRISPR effectors are active nucleases with expanded targeting capabilities. CRISPR J 3: 454–461.

5 Alkhnbashi, O.S., Shah, S.A., Garrett, R.A. et al. (2016). Characterizing leader sequences of CRISPR loci. Bioinformatics 32: i576–i585.

6 Amabile, A., Migliara, A., Capasso, P. et al. (2016). Inheritable silencing of endogenous genes by hit‐and‐run targeted epigenetic editing. Cell 167: 219–232. e14.

7 Anders, C., Niewoehner, O., Duerst, A., and Jinek, M. (2014). Structural basis of PAM‐dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569–573.

8 Anders, C., Bargsten, K., and Jinek, M. (2016). Structural plasticity of PAM recognition by engineered variants of the RNA‐guided endonuclease Cas9. Mol. Cell 61: 895–902.

9 Anderson, E.M., Haupt, A., Schiel, J.A. et al. (2015). Systematic analysis of CRISPR‐Cas9 mismatch tolerance reveals low levels of off‐target activity. J. Biotechnol. 211: 56–65.

10 Anzalone, A.V., Randolph, P.B., Davis, J.R. et al. (2019). Search‐and‐replace genome editing without double‐strand breaks or donor DNA. Nature 576: 149–157.

11 Barrangou, R., Fremaux, C., Deveau, H. et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.

12 Begemann, M.B., Gray, B.N., January, E. et al. (2017). Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci. Rep. 7: 11606.

13 Belotserkovskaya, R., Oh, S., Bondarenko, V.A. et al. (2003). FACT facilitates transcription‐dependent nucleosome alteration. Science 301: 1090–1093.

14 Bernheim, A. and Sorek, R. (2020). The pan‐immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18: 113–119.

15 Blosser, T.R., Loeff, L., Westra, E.R. et al. (2015). Two distinct DNA binding modes guide dual roles of a CRISPR‐Cas protein complex. Mol. Cell 58: 60–70.

16 Bolotin, A., Quinquis, B., Sorokin, A., and Ehrlich, S.D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiol. (Reading) 151: 2551–2561.

17 Brouns, S.J., Jore, M.M., Lundgren, M. et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–964.

18 Budhathoki, J.B., Xiao, Y., Schuler, G. et al. (2020). Real‐time observation of CRISPR spacer acquisition by Cas1‐Cas2 integrase. Nat. Struct. Mol. Biol. 27: 489–499.

19 Burstein, D., Harrington, L.B., Strutt, S.C. et al. (2017). New CRISPR‐Cas systems from uncultivated microbes. Nature 542: 237–241.

20 Cameron, P., Coons, M.M., Klompe, S.E. et al. (2019). Harnessing Type I CRISPR‐Cas systems for genome engineering in human cells. Nat. Biotechnol. 37: 1471–1477.

21 Carte, J., Wang, R., Li, H. et al. (2008). Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22: 3489–3496.

22 Carte, J., Pfister, N.T., Compton, M.M. et al. (2010). Binding and cleavage of CRISPR RNA by Cas6. RNA 16: 2181–2188.

23 Chatterjee, P., Jakimo, N., and Jacobson, J.M. (2018). Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4: eaau0766.

24 Chatterjee, P., Lee, J., Nip, L. et al. (2020). A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11: 2474.

25 Chavez, A., Tuttle, M., Pruitt, B.W. et al. (2016). Comparison of Cas9 activators in multiple species. Nat. Methods 13: 563–567.

26 Chen, S.P. and Wang, H.H. (2019). An engineered Cas‐transposon system for programmable and site‐directed DNA transpositions. CRISPR J 2: 376–394.

27 Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P. et al. (2017). Enhanced proofreading governs CRISPR‐Cas9 targeting accuracy. Nature 550: 407–410.

28 Chen, J.S., Ma, E., Harrington, L.B. et al. (2018). CRISPR‐Cas12a target binding unleashes indiscriminate single‐stranded DNase activity. Science 360: 436–439.

29 Chen, P., Zhou, J., Wan, Y. et al. (2020). A Cas12a ortholog with stringent PAM recognition followed by low off‐target editing rates for genome editing. Genome Biol. 21: 78.

30 Clarke, R., Heler, R., Macdougall, M.S. et al. (2018). Enhanced bacterial Immunity and mammalian genome editing via RNA‐polymerase‐mediated dislodging of Cas9 from double‐strand DNA breaks. Mol. Cell 71: 42–55. e8.

31 Coelho, M.A., De Braekeleer, E., Firth, M. et al. (2020). CRISPR GUARD protects off‐target sites from Cas9 nuclease activity using short guide RNAs. Nat. Commun. 11: 4132.

32 Collias, D. and Beisel, C.L. (2021). CRISPR technologies and the search for the PAM‐free nuclease. Nat. Commun. 12: 555.

33 Cong, L., Ran, F.A., Cox, D. et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.

34 Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O. et al. (2017). RNA editing with CRISPR‐Cas13. Science 358: 1019–1027.

35 Datsenko, K.A., Pougach, K., Tikhonov, A. et al. (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3: 945.

36 Davidson, A.R., Lu, W.T., Stanley, S.Y. et al. (2020). Anti‐CRISPRs: protein inhibitors of CRISPR‐Cas systems. Annu. Rev. Biochem. 89: 309–332.

37 Deltcheva, E., Chylinski, K., Sharma, C.M. et al. (2011). CRISPR RNA maturation by trans‐encoded small RNA and host factor RNase III. Nature 471: 602–607.

38 Deng, L., Garrett, R.A., Shah, S.A. et al. (2013). A novel interference mechanism by a Type IIIB CRISPR‐Cmr module in Sulfolobus. Mol. Microbiol. 87: 1088–1099.

39 Deweirdt, P.C., Sanson, K.R., Sangree, A.K. et al. (2021). Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39: 94–104.

40 Dicarlo, J.E., Norville, J.E., Mali, P. et al. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR‐Cas systems. Nucleic Acids Res. 41: 4336–4343.

41 Ding, Q., Regan, S.N., Xia, Y. et al. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12: 393–394.

42 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nat. Biotechnol. 34: 184–191.

43 Dolan, A.E., Hou, Z., Xiao, Y. et al. (2019). Introducing a spectrum of long‐range genomic deletions in human embryonic stem cells using Type I CRISPR‐Cas. Mol. Cell 74: 936–950. e5.

44 Dugar, G., Leenay, R.T., Eisenbart, S.K. et al. (2018). CRISPR RNA‐dependent binding and cleavage of endogenous RNAs by the campylobacter jejuni Cas9. Mol. Cell 69: 893–905. e7.

45 East‐Seletsky, A., O'connell, M.R., Knight, S.C. et al. (2016). Two distinct RNase activities of CRISPR‐C2c2 enable guide‐RNA processing and RNA detection. Nature 538: 270–273.

46 Edraki, A., Mir, A., Ibraheim, R. et al. (2019). A compact, high‐accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73: 714–726. e4.

47 Elmore, J.R., Sheppard, N.F., Ramia, N. et al. (2016). Bipartite recognition of target RNAs activates DNA cleavage by the Type III‐B CRISPR‐Cas system. Genes Dev. 30: 447–459.

48 Estrella, M.A., Kuo, F.T., and Bailey, S. (2016). RNA‐activated DNA cleavage by the Type III‐B CRISPR‐Cas effector complex. Genes Dev. 30: 460–470.

49 Esvelt, K.M., Mali, P., Braff, J.L. et al. (2013). Orthogonal Cas9 proteins for RNA‐guided gene regulation and editing. Nat. Methods 10: 1116–1121.

50 Faure, G., Makarova, K.S., and Koonin, E.V. (2019a). CRISPR‐Cas: complex functional networks and multiple roles beyond adaptive immunity. J. Mol. Biol. 431: 3–20.

51 Faure, G., Shmakov, S.A., Yan, W.X. et al. (2019b). CRISPR–Cas in mobile genetic elements: counter‐defence and beyond. Nat. Rev. Microbiol. 17: 513–525.

52 Fonfara, I., Richter, H., Bratovič, M. et al. (2016). The CRISPR‐associated DNA‐cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532: 517–521.

53 Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. (2013). Heritable genome editing in C. elegans via a CRISPR‐Cas9 system. Nat. Methods 10: 741–743.

54 Garneau, J.E., Dupuis, M.E., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.

55 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9‐crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109: E2579–E2586.

56 Gasiunas, G., Young, J.K., Karvelis, T. et al. (2020). A catalogue of biochemically diverse CRISPR‐Cas9 orthologs. Nat. Commun. 11: 5512.

57 Gilbert, L.A., Larson, M.H., Morsut, L. et al. (2013). CRISPR‐mediated modular RNA‐guided regulation of transcription in eukaryotes. Cell 154: 442–451.

58 Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. (2014). Genome‐scale CRISPR‐mediated control of gene repression and activation. Cell 159: 647–661.

59 Godde, J.S. and Bickerton, A. (2006). The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62: 718–729.

60 Goldberg, G.W., Jiang, W., Bikard, D., and Marraffini, L.A. (2014). Conditional tolerance of temperate phages via transcription‐dependent CRISPR‐Cas targeting. Nature 514: 633–637.

61 Gonzalez‐Delgado, A., Mestre, M.R., Martinez‐Abarca, F., and Toro, N. (2019). Spacer acquisition from RNA mediated by a natural reverse transcriptase‐Cas1 fusion protein associated with a Type III‐D CRISPR‐Cas system in Vibrio vulnificus. Nucleic Acids Res. 47: 10202–10211.

62 Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W. et al. (2017). Nucleic acid detection with CRISPR‐Cas13a/C2c2. Science 356: 438–442.

63 Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J. et al. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360: 439–444.

64 Grieger, J.C. and Samulski, R.J. (2005). Packaging capacity of adeno‐associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J. Virol. 79: 9933–9944.

65 Grissa, I., Vergnaud, G., and Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 8: 172.

66 Hale, C., Kleppe, K., Terns, R.M., and Terns, M.P. (2008). Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14: 2572–2579.

67 Hale, C.R., Zhao, P., Olson, S. et al. (2009). RNA‐guided RNA cleavage by a CRISPR RNA‐Cas protein complex. Cell 139: 945–956.

68 Hampton, H.G., Watson, B.N.J., and Fineran, P.C. (2020). The arms race between bacteria and their phage foes. Nature 577: 327–336.

69 Han, W., Li, Y., Deng, L. et al. (2017). A Type III‐B CRISPR‐Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res. 45: 1983–1993.

70 Harrington, L.B., Paez‐Espino, D., Staahl, B.T. et al. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8: 1424.

71 Harrington, L.B., Burstein, D., Chen, J.S. et al. (2018). Programmed DNA destruction by miniature CRISPR‐Cas14 enzymes. Science 362: 839–842.

72 Hatoum‐Aslan, A., Maniv, I., Samai, P., and Marraffini, L.A. (2014). Genetic characterization of antiplasmid immunity through a type III‐A CRISPR‐Cas system. J. Bacteriol. 196: 310–317.

73 Haurwitz, R.E., Jinek, M., Wiedenheft, B. et al. (2010). Sequence‐ and structure‐specific RNA processing by a CRISPR endonuclease. Science 329: 1355–1358.

74 Hayes, R.P., Xiao, Y., Ding, F. et al. (2016). Structural basis for promiscuous PAM recognition in Type I‐E Cascade from E. coli. Nature 530: 499–503.

75 Heler, R., Samai, P., Modell, J.W. et al. (2015). Cas9 specifies functional viral targets during CRISPR‐Cas adaptation. Nature 519: 199–202.

76 Hille, F., Richter, H., Wong, S.P. et al. (2018). The Biology of CRISPR‐Cas: backward and forward. Cell 172: 1239–1259.

77 Hirano, H., Gootenberg, J.S., Horii, T. et al. (2016). Structure and engineering of Francisella novicida Cas9. Cell 164: 950–961.

78 Horvath, P., Romero, D.A., Coute‐Monvoisin, A.C. et al. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190: 1401–1412.

79 Hou, Z., Zhang, Y., Propson, N.E. et al. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. U. S. A. 110: 15644–15649.

80 Hu, Z., Wang, S., Zhang, C. et al. (2020). A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol. 18: e3000686.

81 Huo, Y., Nam, K.H., Ding, F. et al. (2014). Structures of CRISPR Cas3 offer mechanistic insights into Cascade‐activated DNA unwinding and degradation. Nat. Struct. Mol. Biol. 21: 771–777.

82 Hwang, W.Y., Fu, Y., Reyon, D. et al. (2013). Efficient genome editing in zebrafish using a CRISPR‐Cas system. Nat. Biotechnol. 31: 227–229.

83 Hynes, A.P., Villion, M., and Moineau, S. (2014). Adaptation in bacterial CRISPR‐Cas immunity can be driven by defective phages. Nat. Commun. 5: 1–6.

84 Ishino, Y., Shinagawa, H., Makino, K. et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169: 5429–5433.

85 Ivančić‐Baće, I., Cass, S.D., Wearne, S.J., and Bolt, E.L. (2015). Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR‐Cas immunity. Nucleic Acids Res. 43: 10821–10830.

86 Jansen, R., Van Embden, J.D.A., Gaastra, W., and Schouls, L.M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 1565–1575.

87 Jeon, Y., Choi, Y.H., Jang, Y. et al. (2018). Direct observation of DNA target searching and cleavage by CRISPR‐Cas12a. Nat. Commun. 9: 2777.

88 Jiang, F., Taylor, D.W., Chen, J.S. et al. (2016a). Structures of a CRISPR‐Cas9 R‐loop complex primed for DNA cleavage. Science 351: 867–871.

89 Jiang, W., Samai, P., and Marraffini, L.A. (2016b). Degradation of phage transcripts by CRISPR‐associated RNases enables Type III CRISPR‐Cas Immunity. Cell 164: 710–721.

90 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

91 Jinek, M., East, A., Cheng, A. et al. (2013). RNA‐programmed genome editing in human cells. elife 2: e00471.

92 Jore, M.M., Lundgren, M., Van Duijn, E. et al. (2011). Structural basis for CRISPR RNA‐guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18: 529–536.

93 Jones, J.R.S.K., Hawkins, J.A., Johnson, N.V. et al. (2020). Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 39: 84–93.

94 Karvelis, T., Gasiunas, G., Miksys, A. et al. (2013). crRNA and tracrRNA guide Cas9‐mediated DNA interference in streptococcus thermophilus. RNA Biol. 10: 841–851.

95 Karvelis, T., Bigelyte, G., Young, J.K. et al. (2020). PAM recognition by miniature CRISPR‐Cas12f nucleases triggers programmable double‐stranded DNA target cleavage. Nucleic Acids Res. 48: 5016–5023.

96 Kazlauskiene, M., Tamulaitis, G., Kostiuk, G. et al. (2016). Spatiotemporal control of Type III‐A CRISPR‐Cas Immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62: 295–306.

97 Kazlauskiene, M., Kostiuk, G., Venclovas, C. et al. (2017). A cyclic oligonucleotide signaling pathway in Type III CRISPR‐Cas systems. Science 357: 605–609.

98 Kim, E., Koo, T., Park, S.W. et al. (2017). in vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8: 14500.

99 Kim, S., Loeff, L., Colombo, S. et al. (2020). Selective loading and processing of prespacers for precise CRISPR adaptation. Nature 579: 141–145.

100 Kiro, R., Shitrit, D., and Qimron, U. (2014). Efficient engineering of a bacteriophage genome using the type I‐E CRISPR‐Cas system. RNA Biol. 11: 42–44.

101 Klein, M., Eslami‐Mossallam, B., Arroyo, D.G., and Depken, M. (2018). Hybridization kinetics explains CRISPR‐Cas off‐targeting rules. Cell Rep. 22: 1413–1423.

102 Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. (2015). Engineered CRISPR‐Cas9 nucleases with altered PAM specificities. Nature 523: 481–485.

103 Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. (2016a). High‐fidelity CRISPR‐Cas9 nucleases with no detectable genome‐wide off‐target effects. Nature 529: 490–495.

104 Kleinstiver, B.P., Tsai, S.Q., Prew, M.S. et al. (2016b). Genome‐wide specificities of CRISPR‐Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34: 869–874.

105 Kleinstiver, B.P., Sousa, A.A., Walton, R.T. et al. (2019). Engineered CRISPR‐Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37: 276–282.

106 Klompe, S.E., Vo, P.L.H., Halpin‐Healy, T.S., and Sternberg, S.H. (2019). Transposon‐encoded CRISPR‐Cas systems direct RNA‐guided DNA integration. Nature 571: 219–225.

107 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage. Nature 533: 420–424.

108 Konermann, S., Lotfy, P., Brideau, N.J. et al. (2018). Transcriptome engineering with RNA‐targeting Type VI‐D CRISPR effectors. Cell 173: 665–676. e14.

109 Koonin, E.V. and Makarova, K.S. (2019). Origins and evolution of CRISPR‐Cas systems. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 374: 20180087.

110 Kosicki, M., Tomberg, K., and Bradley, A. (2018). Repair of double‐strand breaks induced by CRISPR‐Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36: 765–771.

111 Kunin, V., Sorek, R., and Hugenholtz, P. (2007). Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8: R61.

112 Lee, H., Zhou, Y., Taylor, D.W., and Sashital, D.G. (2018). Cas4‐Dependent Prespacer Processing Ensures High‐Fidelity Programming of CRISPR Arrays. Mol. Cell 70: 48–59. e5.

113 Lee, H., Dhingra, Y., and Sashital, D.G. (2019). The Cas4‐Cas1‐Cas2 complex mediates precise prespacer processing during CRISPR adaptation. elife 8.

114 Leenay, R.T., Maksimchuk, K.R., Slotkowski, R.A. et al. (2016). Identifying and visualizing functional PAM diversity across CRISPR‐Cas systems. Mol. Cell 62: 137–147.

115 Levy, A., Goren, M.G., Yosef, I. et al. (2015). CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520: 505–510.

116 Li, Y., Pan, S., Zhang, Y. et al. (2016). Harnessing Type I and Type III CRISPR‐Cas systems for genome editing. Nucleic Acids Res. 44: e34.

117 Li, S., Li, J., Zhang, J. et al. (2018a). Synthesis‐dependent repair of Cpf1‐induced double strand DNA breaks enables targeted gene replacement in rice. J. Exp. Bot. 69: 4715–4721.

118 Li, S.Y., Cheng, Q.X., Wang, J.M. et al. (2018b). CRISPR‐Cas12a‐assisted nucleic acid detection. Cell Discov. 4: 20.

119 Li, L., Li, S., Wu, N. et al. (2019a). HOLMESv2: a CRISPR‐Cas12b‐assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 8: 2228–2237.

120 Li, Y., Li, S., Wang, J., and Liu, G. (2019b). CRISPR/Cas Systems towards Next‐generation biosensing. Trends Biotechnol. 37: 730–743.

121 Lillestol, R.K., Redder, P., Garrett, R.A., and Brugger, K. (2006). A putative viral defence mechanism in archaeal cells. Archaea 2: 59–72.

122 Liu, X.S., Wu, H., Ji, X. et al. (2016). Editing DNA methylation in the mammalian genome. Cell 167: 233–247. e17.

123 Liu, L., Chen, P., Wang, M. et al. (2017a). C2c1‐sgRNA complex structure reveals RNA‐guided DNA cleavage mechanism. Mol. Cell 65: 310–322.

124 Liu, L., Li, X., Ma, J. et al. (2017b). The molecular architecture for RNA‐guided RNA cleavage by Cas13a. Cell 170: 714–726. e10.

125 Liu, L., Li, X., Wang, J. et al. (2017c). Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168: 121–134. e12.

126 Liu, T.Y., Iavarone, A.T., and Doudna, J.A. (2017d). RNA and DNA targeting by a reconstituted thermus thermophilus Type III‐A CRISPR‐Cas system. PLoS One 12: e0170552.

127 Liu, J.J., Orlova, N., Oakes, B.L. et al. (2019a). CasX enzymes comprise a distinct family of RNA‐guided genome editors. Nature 566: 218–223.

128 Liu, T.Y., Liu, J.J., Aditham, A.J. et al. (2019b). Target preference of Type III‐A CRISPR‐Cas complexes at the transcription bubble. Nat. Commun. 10: 3001.

129 Lovett, S.T. (2011). The DNA exonucleases of Escherichia coli. EcoSal Plus 4.

130 Ma, E., Harrington, L.B., O'connell, M.R. et al. (2015). Single‐stranded DNA cleavage by Divergent CRISPR‐Cas9 enzymes. Mol. Cell 60: 398–407.

131 Magadan, A.H., Dupuis, M.E., Villion, M., and Moineau, S. (2012). Cleavage of phage DNA by the streptococcus thermophilus CRISPR3‐Cas system. PLoS One 7: e40913.

132 Maji, B., Moore, C.L., Zetsche, B. et al. (2017). Multidimensional chemical control of CRISPR‐Cas9. Nat. Chem. Biol. 13: 9–11.

133 Makarova, K.S., Grishin, N.V., Shabalina, S.A. et al. (2006). A putative RNA‐interference‐based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1: 7.

134 Makarova, K.S., Wolf, Y.I., Iranzo, J. et al. (2019). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18: 67–83.

135 Mali, P., Yang, L., Esvelt, K.M. et al. (2013). RNA‐guided human genome engineering via Cas9. Science 339: 823–826.

136 Maresca, M., Lin, V.G., Guo, N., and Yang, Y. (2013). Obligate ligation‐gated recombination (ObLiGaRe): custom‐designed nuclease‐mediated targeted integration through nonhomologous end joining. Genome Res. 23: 539–546.

137 Marino, N.D., Pinilla‐Redondo, R., Csorgo, B., and Bondy‐Denomy, J. (2020). Anti‐CRISPR protein applications: natural brakes for CRISPR‐Cas technologies. Nat. Methods 17: 471–479.

138 Marraffini, L.A. and Sontheimer, E.J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843–1845.

139 Mcginn, J. and Marraffini, L.A. (2016). CRISPR‐Cas systems optimize their immune response by specifying the site of spacer integration. Mol. Cell 64: 616–623.

140 Meeske, A.J., Nakandakari‐Higa, S., and Marraffini, L.A. (2019). Cas13‐induced cellular dormancy prevents the rise of CRISPR‐resistant bacteriophage. Nature 570: 241–245.

141 Mekler, V., Minakhin, L., and Severinov, K. (2017). Mechanism of duplex DNA destabilization by RNA‐guided Cas9 nuclease during target interrogation. Proc. Natl. Acad. Sci. U. S. A. 114: 5443–5448.

142 Miller, S.M., Wang, T., Randolph, P.B. et al. (2020). Continuous evolution of SpCas9 variants compatible with non‐G PAMs. Nat. Biotechnol. 38: 471–481.

143 Ming, M., Ren, Q., Pan, C. et al. (2020). CRISPR‐Cas12b enables efficient plant genome engineering. Nat. Plants 6: 202–208.

144 Mojica, F.J., Diez‐Villasenor, C., Soria, E., and Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36: 244–246.

145 Mojica, F.J., Diez‐Villasenor, C., Garcia‐Martinez, J., and Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60: 174–182.

146 Mojica, F.J.M., Diez‐Villasenor, C., Garcia‐Martinez, J., and Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiol. (Reading) 155: 733–740.

147 Moreno‐Mateos, M.A., Fernandez, J.P., Rouet, R. et al. (2017). CRISPR‐Cpf1 mediates efficient homology‐directed repair and temperature‐controlled genome editing. Nat. Commun. 8: 2024.

148 Morisaka, H., Yoshimi, K., Okuzaki, Y. et al. (2019). CRISPR‐Cas3 induces broad and unidirectional genome editing in human cells. Nat. Commun. 10: 5302.

149 Mulepati, S., Heroux, A., and Bailey, S. (2014). Structural biology. Crystal structure of a CRISPR RNA‐guided surveillance complex bound to a ssDNA target. Science 345: 1479–1484.

150 Muller, M., Lee, C.M., Gasiunas, G. et al. (2016). Streptococcus thermophilus CRISPR‐Cas9 systems enable specific editing of the human genome. Mol. Ther. 24: 636–644.

151 Myhrvold, C., Freije, C.A., Gootenberg, J.S. et al. (2018). Field‐deployable viral diagnostics using CRISPR‐Cas13. Science 360: 444–448.

152 Nakata, A., Amemura, M., and Makino, K. (1989). Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K‐12 chromosome. J. Bacteriol. 171: 3553–3556.

153 Nam, K.I.H., Haitjema, C., Liu, X. et al. (2012). Cas5d protein processes pre‐crRNA and assembles into a cascade‐like interference complex in subtype I‐C/Dvulg CRISPR‐Cas system. Structure 20: 1574–1584.

154 Newire, E., Aydin, A., Juma, S. et al. (2020). Identification of a Type IV‐A CRISPR‐Cas system located exclusively on IncHI1B/IncFIB plasmids in enterobacteriaceae. Front. Microbiol. 11: 1937.

155 Niewoehner, O., Garcia‐Doval, C., Rostol, J.T. et al. (2017). Type III CRISPR‐Cas systems produce cyclic oligoadenylate second messengers. Nature 548: 543–548.

156 Nihongaki, Y., Kawano, F., Nakajima, T., and Sato, M. (2015). Photoactivatable CRISPR‐Cas9 for optogenetic genome editing. Nat. Biotechnol. 33: 755–760.

157 Nishimasu, H., Shi, X., Ishiguro, S. et al. (2018). Engineered CRISPR‐Cas9 nuclease with expanded targeting space. Science 361: 1259–1262.

158 Nunez, J.K., Kranzusch, P.J., Noeske, J. et al. (2014). Cas1‐Cas2 complex formation mediates spacer acquisition during CRISPR‐Cas adaptive immunity. Nat. Struct. Mol. Biol. 21: 528–534.

159 Nunez, J.K., Harrington, L.B., Kranzusch, P.J. et al. (2015). Foreign DNA capture during CRISPR‐Cas adaptive immunity. Nature 527: 535–538.

160 Nuñez, J.K., Lee, A.S.Y., Engelman, A., and Doudna, J.A. (2015). Integrase‐mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature 519: 193–198.

161 Nunez, J.K., Bai, L., Harrington, L.B. et al. (2016). CRISPR Immunological Memory Requires a Host Factor for Specificity. Mol. Cell 62: 824–833.

162 Nussenzweig, P.M. and Marraffini, L.A. (2020). Molecular mechanisms of CRISPR‐Cas immunity in bacteria. Annu. Rev. Genet. 54: 93–120.

163 Nussenzweig, P.M., Mcginn, J., and Marraffini, L.A. (2019). Cas9 cleavage of viral genomes primes the acquisition of new immunological memories. Cell Host Microbe 26: 515–526. e6.

164 Osakabe, K., Wada, N., Miyaji, T. et al. (2020). Genome editing in plants using CRISPR type I‐D nuclease. Commun. Biol. 3: 648.

165 Osawa, T., Inanaga, H., Sato, C., and Numata, T. (2015). Crystal structure of the CRISPR‐Cas RNA silencing Cmr complex bound to a target analog. Mol. Cell 58: 418–430.

166 Ozcan, A., Pausch, P., Linden, A. et al. (2019). Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Nat. Microbiol. 4: 89–96.

167 Patchsung, M., Jantarug, K., Pattama, A. et al. (2020). Clinical validation of a Cas13‐based assay for the detection of SARS‐CoV‐2 RNA. Nat. Biomed. Eng. 4: 1140–1149.

168 Pausch, P., Al‐Shayeb, B., Bisom‐Rapp, E. et al. (2020). CRISPR‐CasPhi from huge phages is a hypercompact genome editor. Science 369: 333–337.

169 Perez‐Pinera, P., Kocak, D.D., Vockley, C.M. et al. (2013). RNA‐guided gene activation by CRISPR‐Cas9‐based transcription factors. Nat. Methods 10: 973–976.

170 Pinilla‐Redondo, R., Mayo‐Munoz, D., Russel, J. et al. (2020). Type IV CRISPR‐Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res. 48: 2000–2012.

171 Pougach, K., Semenova, E., Bogdanova, E. et al. (2010). Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol. 77: 1367–1379.

172 Pourcel, C., Salvignol, G., and Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiol. (Reading) 151: 653–663.

173 Pul, U., Wurm, R., Arslan, Z. et al. (2010). Identification and characterization of E. coli CRISPR‐cas promoters and their silencing by H‐NS. Mol. Microbiol. 75: 1495–1512.

174 Pyenson, N.C., Gayvert, K., Varble, A. et al. (2017). Broad targeting specificity during bacterial Type III CRISPR‐Cas immunity constrains viral escape. Cell Host Microbe 22: 343–353. e3.

175 Pyne, M.E., Bruder, M.R., MOO‐Young, M. et al. (2016). Harnessing heterologous and endogenous CRISPR‐Cas machineries for efficient markerless genome editing in Clostridium. Sci. Rep. 6: 25666.

176 Qi, L.S., Larson, M.H., Gilbert, L.A. et al. (2013). Repurposing CRISPR as an RNA‐guided platform for sequence‐specific control of gene expression. Cell 152: 1173–1183.

177 Ramachandran, A., Summerville, L., Learn, B.A. et al. (2020). Processing and integration of functionally oriented prespacers in the Escherichia coli CRISPR system depends on bacterial host exonucleases. J. Biol. Chem. 295: 3403–3414.

178 Ran, F.A., Cong, L., Yan, W.X. et al. (2015). in vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186–191.

179 Raper, A.T., Stephenson, A.A., and Suo, Z. (2018). Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 140: 2971–2984.

180 Redding, S., Sternberg, S.H., Marshall, M. et al. (2015). Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR‐Cas System. Cell 163: 854–865.

181 Roberts, R.J. (2005). How restriction enzymes became the workhorses of molecular biology. Proc. Natl. Acad. Sci. U. S. A. 102: 5905–5908.

182 Rollie, C., Graham, S., Rouillon, C., and White, M.F. (2018). Prespacer processing and specific integration in a Type I‐A CRISPR system. Nucleic Acids Res. 46: 1007–1020.

183 Rostol, J.T. and Marraffini, L.A. (2019). Non‐specific degradation of transcripts promotes plasmid clearance during type III‐A CRISPR‐Cas immunity. Nat. Microbiol. 4: 656–662.

184 Samai, P., Pyenson, N., Jiang, W. et al. (2015). Co‐transcriptional DNA and RNA cleavage during Type III CRISPR‐Cas immunity. Cell 161: 1164–1174.

185 Sampson, T.R., Saroj, S.D., Llewellyn, A.C. et al. (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497: 254–257.

186 Sashital, D.G., Jinek, M., and Doudna, J.A. (2011). An RNA‐induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 18: 680–687.

187 Sashital, D.G., Wiedenheft, B., and Doudna, J.A. (2012). Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46: 606–615.

188 Savitskaya, E., Semenova, E., Dedkov, V. et al. (2013). High‐throughput analysis of type I‐E CRISPR/Cas spacer acquisition in E. coli. RNA Biol. 10: 716–725.

189 Schmid‐Burgk, J.L., Gao, L., Li, D. et al. (2020). Highly parallel profiling of Cas9 variant specificity. Mol. Cell 78: 794–800. e8.

190 Sefcikova, J., Roth, M., Yu, G., and Li, H. (2017). Cas6 processes tight and relaxed repeat RNA via multiple mechanisms: a hypothesis. BioEssays 39.

191 Shah, S.A., Erdmann, S., Mojica, F.J., and Garrett, R.A. (2013). Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10: 891–899.

192 Shao, Y., Richter, H., Sun, S. et al. (2016). A non‐stem‐loop CRISPR RNA is processed by dual binding Cas6. Structure 24: 547–554.

193 Shiimori, M., Garrett, S.C., Graveley, B.R., and Terns, M.P. (2018). Cas4 nucleases define the PAM, length, and orientation of DNA fragments integrated at CRISPR loci. Mol. Cell 70: 814–824. e6.

194 Shmakov, S., Abudayyeh, O.O., Makarova, K.S. et al. (2015). Discovery and functional characterization of diverse class 2 CRISPR‐Cas systems. Mol. Cell 60: 385–397.

195 Shmakov, S., Smargon, A., Scott, D. et al. (2017). Diversity and evolution of class 2 CRISPR‐Cas systems. Nat. Rev. Microbiol. 15: 169–182.

196 Silas, S., Mohr, G., Sidote, D.J. et al. (2016). Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase‐Cas1 fusion protein. Science 351: aad4234–aad4234.

197 Singh, D., Mallon, J., Poddar, A. et al. (2018). Real‐time observation of DNA target interrogation and product release by the RNA‐guided endonuclease CRISPR Cpf1 (Cas12a). Proc. Natl. Acad. Sci. U. S. A. 115: 5444–5449.

198 Sinkunas, T., Gasiunas, G., Fremaux, C. et al. (2011). Cas3 is a single‐stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system. EMBO J. 30: 1335–1342.

199 Sinkunas, T., Gasiunas, G., Waghmare, S.P. et al. (2013). in vitro reconstitution of Cascade‐mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32: 385–394.

200 Slaymaker, I.M., Gao, L., Zetsche, B. et al. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84–88.

201 Slaymaker, I.M., Mesa, P., Kellner, M.J. et al. (2019). High‐Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Rep. 26: 3741–3751. e5.

202 Smargon, A.A., Cox, D.B.T., Pyzocha, N.K. et al. (2017). Cas13b Is a Type VI‐B CRISPR‐associated RNA‐guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65: 618–630. e7.

203 Staals, R.H., Zhu, Y., Taylor, D.W. et al. (2014). RNA targeting by the type III‐A CRISPR‐Cas Csm complex of thermus thermophilus. Mol. Cell 56: 518–530.

204 Staals, R.H., Jackson, S.A., Biswas, A. et al. (2016). Interference‐driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR‐Cas system. Nat. Commun. 7: 12853.

205 Stella, S., Mesa, P., Thomsen, J. et al. (2018). Conformational activation promotes CRISPR‐Cas12a catalysis and resetting of the endonuclease activity. Cell 175: 1856–1871. e21.

206 Sternberg, S.H., Redding, S., Jinek, M. et al. (2014). DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9. Nature 507: 62–67.

207 Sternberg, S.H., Lafrance, B., Kaplan, M., and Doudna, J.A. (2015). Conformational control of DNA target cleavage by CRISPR‐Cas9. Nature 527: 110–113.

208 Strecker, J., Jones, S., Koopal, B. et al. (2019a). Engineering of CRISPR‐Cas12b for human genome editing. Nat. Commun. 10: 212.

209 Strecker, J., Ladha, A., Gardner, Z. et al. (2019b). RNA‐guided DNA insertion with CRISPR‐associated transposases. Science 365: 48–53.

210 Stringer, A.M., Cooper, L.A., Kadaba, S. et al. (2020). Characterization of primed adaptation in the Escherichia coli type I‐E CRISPR‐Cas system. bioRxiv.

211 Strutt, S.C., Torrez, R.M., Kaya, E. et al. (2018). RNA‐dependent RNA targeting by CRISPR‐Cas9. elife 7.

212 Swarts, D.C., Mosterd, C., Van Passel, M.W., and Brouns, S.J. (2012). CRISPR interference directs strand specific spacer acquisition. PLoS One 7: e35888.

213 Swarts, D.C., Van Der Oost, J., and Jinek, M. (2017). Structural basis for guide RNA processing and seed‐dependent DNA targeting by CRISPR‐Cas12a. Mol. Cell 66: 221–233. e4.

214 Tambe, A., East‐Seletsky, A., Knott, G.J. et al. (2018). RNA binding and HEPN‐nuclease activation are decoupled in CRISPR‐Cas13a. Cell Rep. 24: 1025–1036.

215 Tamulaitis, G., Kazlauskiene, M., Manakova, E. et al. (2014). Programmable RNA shredding by the Type III‐A CRISPR‐Cas system of Streptococcus thermophilus. Mol. Cell 56: 506–517.

216 Tanenbaum, M.E., Gilbert, L.A., Qi, L.S. et al. (2014). A protein‐tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159: 635–646.

217 Taylor, D.W., Zhu, Y., Staals, R.H. et al. (2015). Structures of the CRISPR‐Cmr complex reveal mode of RNA target positioning. Science 348: 581–585.

218 Teng, F., Cui, T., Feng, G. et al. (2018). Repurposing CRISPR‐Cas12b for mammalian genome engineering. Cell Discov. 4: 63.

219 Teng, F., Cui, T., Gao, Q. et al. (2019a). Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov. 5: 23.

220 Teng, F., Guo, L., Cui, T. et al. (2019b). CDetection: CRISPR‐Cas12b‐based DNA detection with sub‐attomolar sensitivity and single‐base specificity. Genome Biol. 20: 132.

221 Teng, F., Li, J., Cui, T. et al. (2019c). Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol. 20: 15.

222 Toro, N., Mestre, M.R., Martinez‐Abarca, F., and Gonzalez‐Delgado, A. (2019). Recruitment of reverse transcriptase‐Cas1 fusion proteins by Type VI‐A CRISPR‐Cas systems. Front. Microbiol. 10: 2160.

223 Touchon, M. and Rocha, E.P. (2010). The small, slow and specialized CRISPR and anti‐CRISPR of escherichia and salmonella. PLoS One 5: e11126.

224 Van Houte, S., Ekroth, A.K., Broniewski, J.M. et al. (2016). The diversity‐generating benefits of a prokaryotic adaptive immune system. Nature 532: 385–388.

225 Vo, P.L.H., Ronda, C., Klompe, S.E. et al. (2021). CRISPR RNA‐guided integrases for high‐efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39: 480–489.

226 Vojta, A., Dobrinic, P., Tadic, V. et al. (2016). Repurposing the CRISPR‐Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44: 5615–5628.

227 Walton, R.T., Christie, K.A., Whittaker, M.N., and Kleinstiver, B.P. (2020). Unconstrained genome targeting with near‐PAMless engineered CRISPR‐Cas9 variants. Science 368: 290–296.

228 Wang, J., Li, J., Zhao, H. et al. (2015). Structural and mechanistic basis of PAM‐dependent spacer acquisition in CRISPR‐Cas systems. Cell 163: 840–853.

229 Wang, A.S., Chen, L.C., Wu, R.A. et al. (2020). The histone chaperone FACT induces Cas9 multi‐turnover behavior and modifies genome manipulation in human cells. Mol. Cell 79: 221–233. e5.

230 Wei, Y., Chesne, M.T., Terns, R.M., and Terns, M.P. (2015). Sequences spanning the leader‐repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res. 43: 1749–1758.

231 Weinberger, A.D., Sun, C.L., Plucinski, M.M. et al. (2012). Persisting viral sequences shape microbial CRISPR‐based immunity. PLoS Comput. Biol. 8: e1002475.

232 Wilkinson, M., Drabavicius, G., Silanskas, A. et al. (2019). Structure of the DNA‐bound spacer capture complex of a Type II CRISPR‐Cas system. Mol. Cell 75: 90–101. e5.

233 Wright, A.V., Liu, J.‐J., Knott, G.J. et al. (2017). Structures of the CRISPR genome integration complex. Science 357: 1113–1118.

234 Xiao, Y., Luo, M., Hayes, R.P. et al. (2017). Structure basis for directional R‐loop formation and substrate handover mechanisms in Type I CRISPR‐Cas system. Cell 170: 48–60. e11.

235 Xu, X. and Qi, L.S. (2019). A CRISPR‐dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431: 34–47.

236 Xu, Z., Li, M., Li, Y. et al. (2019). Native CRISPR‐Cas‐mediated genome editing enables dissecting and sensitizing clinical multidrug‐resistant P. aeruginosa. Cell Rep. 29: 1707–1717. e3.

237 Xue, C., Whitis, N.R., and Sashital, D.G. (2016). Conformational control of cascade interference and priming activities in CRISPR immunity. Mol. Cell 64: 826–834.

238 Yan, W.X., Hunnewell, P., Alfonse, L.E. et al. (2019). Functionally diverse type V CRISPR‐Cas systems. Science 363: 88–91.

239 Yourik, P., Fuchs, R.T., Mabuchi, M. et al. (2019). Staphylococcus aureus Cas9 is a multiple‐turnover enzyme. RNA 25: 35–44.

240 Zalatan, J.G., Lee, M.E., Almeida, R. et al. (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160: 339–350.

241 Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. (2015). Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 163: 759–771.

242 Zetsche, B., Heidenreich, M., Mohanraju, P. et al. (2017). Multiplex gene editing by CRISPR‐Cpf1 using a single crRNA array. Nat. Biotechnol. 35: 31–34.

243 Zetsche, B., Abudayyeh, O.O., Gootenberg, J.S. et al. (2020). A Survey of genome editing activity for 16 Cas12a orthologs. Keio J. Med. 69: 59–65.

244 Zhang, Y., Heidrich, N., Ampattu, B.J. et al. (2013). Processing‐independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50: 488–503.

245 Zhang, B., Ye, W., Ye, Y. et al. (2018). Structural insights into Cas13b‐guided CRISPR RNA maturation and recognition. Cell Res. 28: 1198–1201.

246 Zhou, Y., Bravo, J.P.K., Taylor, H.N. et al. (2020). Structure of a type IV CRISPR‐Cas effector complex. bioRxiv.

Genome Editing in Drug Discovery

Подняться наверх