Читать книгу Biomolecules from Natural Sources - Группа авторов - Страница 51

2.3.3.1.2 Lipases

Оглавление

Lipases were characterized by their ability to hydrolyze long chain triglycerides [107]. Lipase catalyzes the hydrolysis (or synthesis) of insoluble esters. The primary use of lipase is in cleaning applications, although its use in the chiral synthesis of high value chemicals is also important. A comparison of the experimental results of several site-directed variants with structural modeling has provided much insight into the catalytic mechanism of a fungal lipase from Rhizopus oryzae at the molecular level [108]. In order to understand lipase activity fully one must also take into account its ability to interact with a macroscopic substrate, such as a triglyceride surface. Most lipases are activated at the oil(substrate)–water interface by a conformational change to adapt the enzyme–substrate interaction [109]. Changes at Glu87 and Trp89 were reported to alter activity of the lipase from Humicola lanuginosa (Lipolase) [110]. Surfactant and calcium sequestering agents, such as sodium tripolyphosphate, reduce the activity of current lipases 100–1000-fold in laundry detergents [111, 112]. Some progress in designing variants that reduce this inhibition by creating favorable surfactant–enzyme interactions were reported to give improved laundry performance. The commercial applications of lipases include, detergents such as in dishwashing, clearing of drains clogged by lipids in food processing or domestic/industrial effluent treatment plants [96].

Biomolecules from Natural Sources

Подняться наверх