Читать книгу Principles in Microbiome Engineering - Группа авторов - Страница 57

References

Оглавление

1 1 Huss, J. (2014). Methodology and ontology in microbiome research. Biol. Theory 9 (4): 392–400.

2 2 Poliakov, E., Cooper, D.N., Stepchenkova, E.I., et al. (2015). Genetics in genomic era. Genet. Res. Int. 2015: 364960.

3 3 Turnbaugh, P.J., Ley, R.E., Hamady, M., et al. (2007). The human microbiome project. Nature 449 (7164): 804–810.

4 4 Gevers, D., Knight, R., Petrosino, J.F., et al. (2012). The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol. 10 (8): e1001377.

5 5 Torres, M.P., Chakraborty, S., Souchek, J., and Batra, S.K. (2012). Mucin‐based targeted pancreatic cancer therapy. Curr. Pharm. Des. 18 (17): 2472–2481.

6 6 The Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature 486 (7402): 207–214.

7 7 Dewhirst, F.E., Chen, T., Izard, J., et al. (2010). The human oral microbiome. J. Bacteriol. 192 (19): 5002–5017.

8 8 Zaura, E., Keijser, B.J.F., Huse, S.M., et al. (2009). Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 9: 259.

9 9 Moffatt, M.F. and Cookson, W.O. (2017). The lung microbiome in health and disease. Clin. Med. (Lond.) 17 (6): 525–529.

10 10 Goodrich, J.K., Waters, J.L., Poole, A.C., et al. (2014). Human genetics shape the gut microbiome. Cell 159 (4): 789–799.

11 11 Grice, E.A., Kong, H.H., Conlan, S., et al. (2009). Topographical and temporal diversity of the human skin microbiome. Science 324 (5931): 1190–1192.

12 12 Hilt, E.E., McKinley, K., Pearce, M.M., et al. (2014). Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 52 (3): 871–876.

13 13 Mameli, C., Cattaneo, C., Panelli, S., et al. (2019). Taste perception and oral microbiota are associated with obesity in children and adolescents. PLoS One 14 (9): e0221656.

14 14 Stewart, C.J., Ajami, N.J., O'Brien, J.L., et al. (2018). Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562 (7728): 583–588.

15 15 Vatanen, T., Franzosa, E.A., Schwager, R., et al. (2018). The human gut microbiome in early‐onset type 1 diabetes from the TEDDY study. Nature 562 (7728): 589–594.

16 16 Ferretti, P., Pasolli, E., Tett, A., et al. (2018). Mother‐to‐infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24 (1): 133.e5–145.e5.

17 17 Fox, C. and Eichelberger, K.Y. (2015). Maternal microbiome and pregnancy outcomes. Fertil. Steril. 104 (6): 1358–1363.

18 18 Bik, E.M., Eckburg, P.B., Gill, S.R., et al. (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. U.S.A. 103 (3): 732–737.

19 19 Andersson, A.F., Lindberg, M., Jakobsson, H., et al. (2008). Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3 (7): e2836.

20 20 Dorer, M.S., Talarico, S., and Salama, N.R. (2009). Helicobacter pylori's unconventional role in health and disease. PLoS Pathog. 5 (10): e1000544.

21 21 Booijink, C.C., El‐Aidy, S., Rajilić‐Stojanović, M., et al. (2010). High temporal and inter‐individual variation detected in the human ileal microbiota. Environ. Microbiol. 12 (12): 3213–3227.

22 22 Zoetendal, E.G., Raes, J., van den Bogert, B., et al. (2012). The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6 (7): 1415–1426.

23 23 Collado, M.C., Donat, E., Ribes‐Koninckx, C., et al. (2009). Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J. Clin. Pathol. 62 (3): 264–269.

24 24 Willing, B., Halfvarson, J., Dicksved, J., et al. (2009). Twin studies reveal specific imbalances in the mucosa‐associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 15 (5): 653–660.

25 25 Nam, Y.D., Jung, M.J., Roh, S.W., et al. (2011). Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One 6 (7): e22109.

26 26 Flint, H.J., Duncan, S.H., Scott, K.P., and Louis, P. (2007). Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9 (5): 1101–1111.

27 27 Arumugam, M., Raes, J., Pelletier, E., et al. (2011). Enterotypes of the human gut microbiome. Nature 473 (7346): 174–180.

28 28 Grice, E.A. and Segre, J.A. (2011). The skin microbiome. Nat. Rev. Microbiol. 9 (4): 244–253.

29 29 Nakatsuji, T., Chiang, H., Jiang, S.B., et al. (2013). The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. 4: 1431.

30 30 Selhub, E.M., Logan, A.C., and Bested, A.C. (2014). Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J. Physiol. Anthropol. 33 (1): 2.

31 31 Bassis, C.M., Tang, A.L., Young, V.B., and Pynnonen, M.A., et al. (2014). The nasal cavity microbiota of healthy adults. Microbiome 2: 27.

32 32 Ditz, B., Christenson, S., Rossen, J., et al. (2020). Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax 75 (4): 338–344.

33 33 Segal, L.N., Alekseyenko, A.V., Clemente, J.C., et al. (2013). Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1 (1): 19.

34 34 Charlson, E.S., Bittinger, K., Haas, A.R., et al. (2011). Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184 (8): 957–963.

35 35 Siddiqui, H., Lagersen, K., Nederbragt, A.J., et al. (2012). Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol. 12: 205–205.

36 36 Thomas‐White, K., Brady, M., Wolfe, A.J., and Mueller, E.R. (2016). The bladder is not sterile: history and current discoveries on the urinary microbiome. Curr. Bladder Dysfunct. Rep. 11 (1): 18–24.

37 37 Aagaard, K., Ma, J., Antony, K.M., et al. (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6 (237): 237ra65.

38 38 Ronald, A. (2002). The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113 (Suppl. 1A): 14s–19s.

39 39 Soriano, F. and Tauch, A. (2008). Microbiological and clinical features of Corynebacterium urealyticum: urinary tract stones and genomics as the Rosetta Stone. Clin. Microbiol. Infect. 14 (7): 632–643.

40 40 Lee, J.W., Shim, Y.H., and Lee, S.J. (2009). Lactobacillus colonization status in infants with urinary tract infection. Pediatr. Nephrol. 24 (1): 135–139.

41 41 Latthe, P.M., Toozs‐Hobson, P., and Gray, J. (2008). Mycoplasma and ureaplasma colonisation in women with lower urinary tract symptoms. J. Obstet. Gynaecol. 28 (5): 519–521.

42 42 Gajer, P., Brotman, R.M., Bai, G., et al. (2012). Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4 (132): 132ra52.

43 43 Ott, S.J., Musfeldt, M., Wenderoth, D.F., et al. (2004). Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53 (5): 685–693.

44 44 Freire, M., Moustafa, A., Harkins, D.M., et al. (2020). Longitudinal study of oral microbiome variation in twins. Sci. Rep. 10 (1): 7954.

45 45 Turnbaugh, P.J., Hamady, M., Yatsunenko, T., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457 (7228): 480–484.

46 46 Preidis, G.A. and Versalovic, J. (2009). Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136 (6): 2015–2031.

47 47 Dewulf, E.M., Cani, P.D., Claus, S.P., et al. (2013). Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin‐type fructans in obese women. Gut 62 (8): 1112–1121.

48 48 Petschow, B., Doré, J., Hibberd, P., et al. (2013). Probiotics, prebiotics, and the host microbiome: the science of translation. Ann. N. Y. Acad. Sci. 1306 (1): 1–17.

49 49 Wieërs, G., Belkhir, L., Enaud, R., et al. (2020). How probiotics affect the microbiota. Front. Cell. Infect. Microbiol. 9: 454–454.

50 50 Mandel, D.R., Eichas, K., and Holmes, J. (2010). Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement. Altern. Med. 10: 1.

51 51 Hempel, S., Newberry, S., Ruelaz, A., et al. (2011). Safety of probiotics used to reduce risk and prevent or treat disease. Evid. Rep. Technol. Assess. (Full Rep.) 200: 1–645.

52 52 Hempel, S., Newberry, S.J., Maher, A.R., et al. (2012). Probiotics for the prevention and treatment of antibiotic‐associated diarrhea: a systematic review and meta‐analysis. JAMA 307 (18): 1959–1969.

53 53 Zarrinpar, A., Chaix, A., Yooseph, S., et al. (2014). Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20 (6): 1006–1017.

54 54 David, L.A., Maurice, C.F., Carmody, R.N., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (7484): 559–563.

55 55 Shi, W., Qi, H., Sun, Q., et al. (2018). gcMeta: A global catalogue of metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 47 (D1): D637–D648.

56 56 Dhariwal, A., Chong, J., Habib, S., et al. MicrobiomeAnalyst ‐ a web‐based tool for comprehensive statistical, visual and meta‐analysis of microbiome data. Nucleic Acids Res. 45: W180–W188.

57 57 Patel, J.B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol. Diagn. 6 (4): 313–321.

58 58 Wang, Q., Garrity, G.M., Tiedje, J.M., et al. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 (16): 5261–5267.

59 59 Weisburg, W.G., Barns, S.M., Pelletier, D.A., et al. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 (2): 697–703.

60 60 Hasan, N.A., Young, B.A., Minard‐Smith, A.T., et al. (2014). Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One 9 (5): e97699.

61 61 Segata, N., Waldron, L., Ballarini, A., et al. (2012). Metagenomic microbial community profiling using unique clade‐specific marker genes. Nat. Methods 9 (8): 811–814.

62 62 Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., et al. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1 (6): 6ra14.

63 63 Szakály, Z., Szente, V., Kövér, G., et al. (2012). The influence of lifestyle on health behavior and preference for functional foods. Appetite 58 (1): 406–413.

64 64 Zhao, J., Zhang, X., Liu, H., et al. (2019). Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci. 20 (2): 145–154.

65 65 Fan, P., Liu, P., Song, P., et al. (2017). Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 7 (1): 43412.

66 66 Karen, L.J. (1999). Small intestinal bacterial overgrowth. Vet. Clin. North Am. Small Anim. Pract. 29 (2): 523–550.

67 67 Mayneris‐Perxachs, J., Bolick, D.T., Leng, J., et al. (2016). Protein‐ and zinc‐deficient diets modulate the murine microbiome and metabolic phenotype. Am. J. Clin. Nutr. 104 (5): 1253–1262.

68 68 Singh, R.K., Chang, H.W., Yan, D.I., et al. (2017). Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15 (1): 73.

69 69 Reddy, B.S., Weisburger, J.H., and Wynder, E.L. (1975). Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man. J. Nutr. 105 (7): 878–884.

70 70 Cotillard, A., Kennedy, S.P., Kong, L.C., et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature 500 (7464): 585–588.

71 71 Meddah, A.T.T., Yazourh, A., Desmet, I., et al. (2001). The regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). J. Appl. Microbiol. 91 (6): 1110–1117.

72 72 Romond, M.B., Ais, A., Guillemot, F., et al. (1998). Cell‐free whey from milk fermented with Bifidobacterium breve C50 used to modify the colonic microflora of healthy subjects. J. Dairy Sci. 81 (5): 1229–1235.

73 73 Dominika, Ś., Arjan, N., Karyn, R.P., et al. (2011). The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol. 145 (1): 267–272.

74 74 Khan, T.A. and Sievenpiper, J.L. (2016). Controversies about sugars: results from systematic reviews and meta‐analyses on obesity, cardiometabolic disease and diabetes. Eur. J. Nutr. 55 (Suppl. 2): 25–43.

75 75 Jensen, T., Abdelmalek, M.F., Sullivan, S., et al. (2018). Fructose and sugar: a major mediator of non‐alcoholic fatty liver disease. J. Hepatol. 68 (5): 1063–1075.

76 76 Ruxton, C.H., Gardner, E.J., and McNulty, H.M. (2010). Is sugar consumption detrimental to health? A review of the evidence 1995–2006. Crit. Rev. Food Sci. Nutr. 50 (1): 1–19.

77 77 Townsend, G.E., Han, W., Schwalm, N.D., et al. (2019). Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proc. Natl. Acad. Sci. U.S.A. 116 (1): 233–238.

78 78 Di Rienzi, S.C. and Britton, R.A. (2020). Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Adv. Nutr. (Bethesda, MD) 11 (3): 616–629.

79 79 Chai, Y., Beauregard, P.B., Vlamakis, H., et al. (2012). Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. MBio 3 (4): e00184–e00112.

80 80 Tytgat, H.L.P. and de Vos, W.M. (2016). Sugar coating the envelope: glycoconjugates for microbe‐host crosstalk. Trends Microbiol. 24 (11): 853–861.

81 81 Hanuszkiewicz, A., Pittock, P., Humphries, F., et al. (2014). Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J. Biol. Chem. 289 (27): 19231–19244.

82 82 Eid, N., Enani, S., Walton, G., et al. (2014). The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 3: e46.

83 83 Parvin, S., Easmin, D., Sheikh, A., et al. (2015). Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. American Journal of Life Sciences 3: 274–278.

84 84 Francavilla, R., Calasso, M., Calace, L., et al. (2012). Effect of lactose on gut microbiota and metabolome of infants with cow's milk allergy. Pediatr. Allergy Immunol. 23 (5): 420–427.

85 85 Suez, J., Korem, T., Zeevi, D., et al. (2015). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstetrical & Gynecological Survey 70 (1): 31–32.

86 86 Halmos, E.P., Christophersen, C.T., Bird, A.R., et al. (2015). Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64 (1): 93–100.

87 87 Craig, W.J. (2009). Health effects of vegan diets. Am. J. Clin. Nutr. 89 (5): 1627s–1633s.

88 88 Tomova, A., Bukovsky, I., Rembert, E., et al. (2019). The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr. 6: 47.

89 89 Parada Venegas, D., Fuente, M.K.D., Landskron, G., et al. (2019). Short chain fatty acids (SCFAs)‐mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277.

90 90 Glick‐Bauer, M. and Yeh, M.‐C. (2014). The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 6 (11): 4822–4838.

91 91 Liu, Z., Lin, X.C., Huang, G.W., et al. (2014). Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe 26: 1–6.

92 92 Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., et al. (2011). Dominant and diet‐responsive groups of bacteria within the human colonic microbiota. ISME J. 5 (2): 220–230.

93 93 Hildebrandt, M.A., Hoffmann, C., Sherrill‐Mix, S.A., et al. (2009). High‐fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137 (5): 1716–24.e1‐2.

94 94 Zhang, M. and Yang, X.‐J. (2016). Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J. Gastroenterol. 22 (40): 8905–8909.

95 95 Fava, F., Gitau, R., Griffin, B.A., et al. (2013). The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short‐chain fatty acid excretion in a metabolic syndrome 'at‐risk' population. Int. J. Obes. (Lond) 37 (2): 216–223.

96 96 Wu, G.D., Chen, J., Hoffmann, C., et al. (2011). Linking long‐term dietary patterns with gut microbial enterotypes. Science (New York, NY) 334 (6052): 105–108.

97 97 Cani, P.D., Bibiloni, R., Knauf, C., et al. (2008). Changes in gut microbiota control metabolic endotoxemia‐induced inflammation in high‐fat diet–induced obesity and diabetes in mice. Diabetes 57 (6): 1470–1481.

98 98 Lecomte, V., Kaakoush, N.O., Maloney, C.A., et al. (2015). Changes in gut microbiota in rats fed a high fat diet correlate with obesity‐associated metabolic parameters. PLoS One 10 (5): e0126931.

99 99 Urwin, H.J., Miles, E.A., Noakes, P.S., et al. (2014). Effect of salmon consumption during pregnancy on maternal and infant faecal microbiota, secretory IgA and calprotectin. Br. J. Nutr. 111 (5): 773–784.

100 100 Chen, J., He, X., and Huang, J. (2014). Diet effects in gut microbiome and obesity. J. Food Sci. 79 (4): R442–R451.

101 101 LaMagna, M. (2018). This map shows where the wealthy — and not so wealthy — of the world live. See how much citizens of the wealthiest countries have, compared with the least November 13, 2018. https://www.marketwatch.com/story/this-map-shows-where-the-wealthy-and-not-so-wealthy-of-the-world-live-2018-11-13 (accessed 14 December 2021).

102 102 McLeod, S. (2020). Maslow's hierarchy of needs. Simply Psychology. https://www.simplypsychology.org/maslow.html (accessed 14 December 2021).

103 103 Saravia, L., González‐Zapata, L.I., Rendo‐Urteaga, T., et al. (2018). Development of a food frequency questionnaire for assessing dietary intake in children and adolescents in South America. Obesity (Silver Spring) 26 (Suppl. 1): S31–s40.

104 104 Kolady, D.E., Kattelmann, K., and Scaria, J. (2019). Effects of health‐related claims on millennials' willingness to pay for probiotics in the U.S.: implications for regulation. J. Funct. Foods 60: 103434.

105 105 Engstrand, L. and Lindberg, M. (2013). Helicobacter pylori and the gastric microbiota. Best Pract. Res. Clin. Gastroenterol. 27 (1): 39–45.

106 106 Swidsinski, A., Sydora, B.C., Doerffel, Y., et al. (2007). Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13 (8): 963–970.

107 107 Lim, M.Y., Yoon, H.S., Rho, M., et al. (2016). Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Sci. Rep. 6: 23745.

108 108 Vallès, Y., Inman, C.K., Peters, B.A., et al. (2018). Types of tobacco consumption and the oral microbiome in the United Arab Emirates Healthy Future (UAEHFS) pilot study. Sci. Rep. 8 (1): 11327.

109 109 Capurso, G. and Lahner, E. (2017). The interaction between smoking, alcohol and the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 31 (5): 579–588.

110 110 Koenig, J.E., Spor, A., Scalfone, N., et al. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl. 1): 4578–4585.

111 111 Biagi, E., Nylund, L., Candela, M., et al. (2010). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5 (5): e10667.

112 112 Biasucci, G., Benenati, B., Morelli, L., et al. (2008). Cesarean delivery may affect the early biodiversity of intestinal bacteria. J. Nutr. 138 (9): 1796s–1800s.

113 113 Biasucci, G., Rubini, M., Riboni, S., et al. (2010). Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86 (Suppl. 1): 13–15.

114 114 Dominguez‐Bello, M.G., Costello, E.K., Contreras, M., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS. 107(26): 11971‐5.

115 115 Schwartz, S., Friedberg, I., Ivanov, I.V., et al. (2012). A metagenomic study of diet‐dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 13 (4): r32.

116 116 Tanaka, M. and Nakayama, J. (2017). Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66 (4): 515–522.

117 117 Cabrera‐Rubio, R., Collado, M.C., Laitinen, K., et al. (2012). The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96 (3): 544–551.

118 118 Hunt, K.M., Foster, J.A., Forney, L.J., et al. (2011). Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 6 (6): e21313.

119 119 Zivkovic, A.M., Germana, J.B., Lebrillaa, C.B., and Mills, D.A. (2010). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. PNAS 108 (Suppl. 1): 4653–4658.

120 120 Hopkins, M.J., Macfarlane, G.T., Furrie, E., et al. (2005). Characterisation of intestinal bacteria in infant stools using real‐time PCR and northern hybridisation analyses. FEMS Microbiol. Ecol. 54 (1): 77–85.

121 121 Penders, J., Vink, C., Driessen, C., et al. (2005). Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast‐fed and formula‐fed infants by real‐time PCR. FEMS Microbiol. Lett. 243 (1): 141–147.

122 122 Derrien, M., Alvarez, A.S., and de Vos, W.M. (2019). The gut microbiota in the first decade of life. Trends Microbiol. 27 (12): 997–1010.

123 123 Fallani, M., Young, D., Scott, J., et al. (2010). Intestinal microbiota of 6‐week‐old infants across Europe: geographic influence beyond delivery mode, breast‐feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 51 (1): 77–84.

124 124 Matsuyama, M., Morrison, M., Cao, K.‐A.L., et al. (2019). Dietary intake influences gut microbiota development of healthy Australian children from the age of one to two years. Sci. Rep. 9 (1): 12476.

125 125 Rinninella, E., Raoul, P., Cintoni, M., et al. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms Jan 10; 7 (1): 14.

126 126 Hollister, E.B., Riehle, K., Luna, R.A., et al. (2015). Structure and function of the healthy pre‐adolescent pediatric gut microbiome. Microbiome Aug 26; 3: 36.

127 127 Ringel‐Kulka, T., Cheng, J., Ringel, Y., et al. (2013). Intestinal microbiota in healthy US young children and adults‐a high throughput microarray analysis. PLoS One May 23; 8 (5): e64315.

128 128 Agans, R., Rigsbee, L., Kenche, H., et al. (2011). Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol. Ecol. 77 (2): 404–412.

129 129 Eckburg, P.B., Bik, E.M., Bernstein, C.N., et al. (2005). Diversity of the human intestinal microbial flora. Science (New York, NY) 308 (5728): 1635–1638.

130 130 Rodríguez, J.M., Murphy, K., Stanton, C., et al. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26: 26050.

131 131 Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., et al. (2006). An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122): 1027–1031.

132 132 Claesson, M.J., Cusack, S., O'Sullivan, O., et al. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl. 1): 4586–4591.

133 133 Drago, L., Toscano, M., Rodighiero, V., et al. (2012). Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J. Clin. Gastroenterol. 46: S81–S84.

134 134 Burggraf, C., Teuber, R., Brosig, S., and Meier, T. (2018). Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 76 (10): 747–764.

135 135 Kim, S., Haines, P.S., Siega‐Riz, A.M., and Popkin, B.M. (2003). The diet quality index‐international (DQI‐I) provides an effective tool for cross‐national comparison of diet quality as illustrated by China and the United States. J. Nutr. 133 (11): 3476–3484.

136 136 Stookey, J.D., Wang, Y., Ge, K., et al. (2000). Measuring diet quality in china: the INFH‐UNC‐CH diet quality index. Eur. J. Clin. Nutr. 54 (11): 811–821.

137 137 Remans, R., Woodcd, S.A., Saha, N., et al. (2014). Measuring nutritional diversity of national food supplies. Glob. Food Sec. 3 (3): 174–182.

138 138 Zhang, M., Binns, C.W., and Lee, A.H. (2002). Dietary patterns and nutrient intake of adult women in south‐east China: a nutrition study in Zhejiang province. Asia Pac. J. Clin. Nutr. 11 (1): 13–21.

139 139 Nakayama, J., Watanabe, K., Jiang, J., et al. (2015). Diversity in gut bacterial community of school‐age children in Asia. Sci. Rep. 5: 8397.

140 140 Hisada, T., Endoh, K., and Kuriki, K. (2015). Inter‐ and intra‐individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese. Arch. Microbiol. 197 (7): 919–934.

141 141 Han, K., Bose, B., Wang, J., et al. (2015). Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol. Nutr. Food Res. 59 (5): 1004–1008.

142 142 Mottet, A., Haan, C., de., Falcucci, A., et al. (2017). Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14: 1–8.

143 143 Poore, J. and Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. Science 360 (6392): 987–992.

144 144 González‐García, S., Esteve‐Llorens, X., Moreira, M.T., and Feijoo, G. (2018). Carbon footprint and nutritional quality of different human dietary choices. Sci. Total Environ. 644: 77–94.

145 145 Springmann, M., Wiebe, K., Mason‐D'Croz, D., et al. (2018). Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country‐level detail. Lancet Planet Health 2 (10): e451–e461.

146 146 Chotirmall, S.H., Gellatly, S.L., Budden, K.F., et al. (2017). Microbiomes in respiratory health and disease: an Asia‐Pacific perspective. Respirology 22 (2): 240–250.

147 147 Lim, S.S., Vos, T., Flaxman, A.D., et al. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380 (9859): 2224–2260.

148 148 Amine, E., Baba, N.H., Belhadj, M., Yap, M., et al. (2003). Diet, nutrition and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. 916: i–viii, 1–149, backcover.

149 149 Magarey, A., McKean, S., and Daniels, L. (2006). Evaluation of fruit and vegetable intakes of Australian adults: the National Nutrition Survey 1995. Aust. N. Z. J. Public Health 30 (1): 32–37.

150 150 Charlton, K., Kowal, P., Soriano, M.M., et al. (2014). Fruit and vegetable intake and body mass index in a large sample of middle‐aged Australian men and women. Nutrients 6 (6): 2305–2319.

151 151 Costello, S.P. and Bryant, R.V. (2019). Faecal microbiota transplantation in Australia: bogged down in regulatory uncertainty. Intern. Med. J. 49 (2): 148–151.

152 152 MacIntyre, U.E., Kruger, H.S., Venter, C.S., Vorster, H.H., et al. (2002). Dietary intakes of an African population in different stages of transition in the North West Province, South Africa: the THUSA study. Nutr. Res. 22 (3): 239–256.

153 153 De Filippo, C., Cavalieri, D., Paola, M.D., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107 (33): 14691–14696.

154 154 Popkin, B.M. (2001). The nutrition transition and obesity in the developing world. J. Nutr. 131 (3): 871s–873s.

155 155 Wang, Y.C., Bleich, S.N., and Gortmaker, S.L. (2008). Increasing caloric contribution from sugar‐sweetened beverages and 100% fruit juices among US children and adolescents, 1988–2004. Pediatrics 121 (6): e1604–e1614.

156 156 Keast, D.R., Fulgoni 3rd, V.L., Nicklas, T.A., O'Neil, C.E., et al. (2013). Food sources of energy and nutrients among children in the United States: National Health and Nutrition Examination Survey 2003–2006. Nutrients 5 (1): 283–301.

157 157 Kant, A.K. (1996). Indexes of overall diet quality: a review. J. Am. Diet. Assoc. 96 (8): 785–791.

158 158 Popkin, B.M., Siega‐Riz, A.M., and Haines, P.S. (1996). A comparison of dietary trends among racial and socioeconomic groups in the United States. N. Engl. J. Med. 335 (10): 716–720.

159 159 Wang, D.D., Leung, C.W., Li, Y., et al. (2014). Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern. Med. 174 (10): 1587–1595.

160 160 Rehm, C.D., Peñalvo, J.L., Afshin, A., Mozaffarian, D., et al. (2016). Dietary intake among US adults, 1999–2012. JAMA 315 (23): 2542–2553.

161 161 Yatsunenko, T., Rey, F.E., Manary, M.J., et al. (2012). Human gut microbiome viewed across age and geography. Nature 486 (7402): 222–227.

162 162 Muegge, B.D., Kuczynski, J., Knights, D., et al. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science (New York, N.Y.) 332 (6032): 970–974.

163 163 Forgie, A.J., Fouhse, J.M., and Willing, B.P. (2019). Diet‐microbe‐host interactions that affect gut mucosal integrity and infection resistance. Front. Immunol. 10: 14.

164 164 Ventola, C.L. (2015). The antibiotic resistance crisis: Part 2: management strategies and new agents. P & T 40 (5): 344–352.

165 165 Bakken, J.S., Borody, T., Brandt, L.J., et al. (2011). Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9 (12): 1044–1049.

166 166 Bakken, J.S. (2009). Fecal bacteriotherapy for recurrent Clostridium difficile infection. Anaerobe 15 (6): 285–289.

167 167 Jung Lee, W., Lattimer, L.D.N., Stephen, S., et al. (2015). Fecal microbiota transplantation: a review of emerging indications beyond relapsing Clostridium difficile toxin colitis. Gastroenterol. Hepatol. 11 (1): 24–32.

168 168 Foo, J.L., Ling, H., Lee, Y.S., Chang, M.W., et al. (2017). Microbiome engineering: current applications and its future. Biotechnol. J. 12 (3) 1600099.

169 169 Wilson, K.H. (1993). The microecology of Clostridium difficile. Clin. Infect. Dis. 16 (Suppl. 4): S214–S218.

170 170 Keller, J.J. and Kuijper, E.J. (2015). Treatment of recurrent and severe Clostridium difficile infection. Annual Review of Medicine 66 (1): 373–386.

171 171 Czepiel, J., Dróżdż, M., Pituch, H., et al. (2019). Clostridium difficile infection: review. Eur. J. Clin. Microbiol. Infect. Dis. 38 (7): 1211–1221.

172 172 CDC (2020). FAQs for Clinicians about C. diff. https://www.cdc.gov/cdiff/clinicians/faq.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fhai%2Forganisms%2Fcdiff%2Fcdiff_faqs_hcp.html (cited 2 June 2020).

173 173 Schubert, A.M., Rogers, M.A., Ring, C., et al. (2014). Microbiome data distinguish patients with Clostridium difficile infection and non‐C. difficile‐associated diarrhea from healthy controls. MBio 5 (3): e01021.

174 174 Chang, J.Y., Antonopoulos, D.A., Kalra, A., et al. (2008). Decreased diversity of the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. J. Infect. Dis. 197 (3): 435–438.

175 175 Antharam, V.C., Li, E.C., Ishmael, A., et al. (2013). Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 51 (9): 2884–2892.

176 176 Theriot, C.M. and Young, V.B. (2015). Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69: 445–461.

177 177 Fareed, S., Sarode, N., Stewart, F.J., et al. (2018). Applying fecal microbiota transplantation (FMT) to treat recurrent Clostridium difficile infections (rCDI) in children. PeerJ 6: e4663.

178 178 Gough, E., Shaikh, H., and Manges, A.R. (2011). Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53 (10): 994–1002.

179 179 Fadda, H.M. (2020). The route to palatable fecal microbiota transplantation. AAPS PharmSciTech 21 (3): 114.

180 180 Ianiro, G., Maida, M., Burisch, J., et al. (2018). Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: a systematic review and meta‐analysis. United Eur. Gastroenterol. J. 6 (8): 1232–1244.

181 181 Kao, D., Roach, B., Silva, M., et al. (2017). Effect of oral capsule‐ vs colonoscopy‐delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 318 (20): 1985–1993.

182 182 Allegretti, J.R., Fischer, M., Sagi, S.V., et al. (2019). Fecal microbiota transplantation capsules with targeted colonic versus gastric delivery in recurrent Clostridium difficile infection: a comparative cohort analysis of high and lose dose. Dig. Dis. Sci. 64 (6): 1672–1678.

183 183 Willing, B.P., Russell, S.L., and Finlay, B.B. (2011). Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9 (4): 233–243.

184 184 Cai, R., Cheng, C., Chen, J., et al. (2020). Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes.11(4): 680–690.

185 185 Hryckowian, A.J., Van Treuren, W., Smits, S.A., et al. (2018). Microbiota‐accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 3 (6): 662–669.

186 186 Quin, C. and Gibson, D.L. (2019). Dietary lipids and enteric infection in rodent models. In: The Molecular Nutrition of Fats, Chapter 4 (ed. V.B. Patel), 49–64. Academic Press.

187 187 DeCoffe, Quin, C., Gill, S.K.D., et al. (2016). Dietary lipid type, rather than total number of calories, alters outcomes of enteric infection in mice. J. Infect. Dis. 213 (11): 1846–1856.

188 188 Caen, J. and Wu, Q. (2010). Hageman factor, platelets and polyphosphates: early history and recent connection. J. Thromb. Haemost.: JTH. 8 (8): 1670–1674.

189 189 Farré, R., Fiorani, M., Abdu Rahiman, S., and Matteoli, G. (2020). Intestinal permeability, inflammation and the role of nutrients. Nutrients. 12 (4): 1185.

190 190 Murtaza, N., Cuív, P.Ó., and Morrison, M. (2017). Diet and the microbiome. Gastroenterol. Clin. North Am. 46 (1): 49–60.

191 191 Sigall‐Boneh, R., Levine, A., Lomer, M., et al. (2017). Research gaps in diet and nutrition in inflammatory bowel disease. A topical review by D‐ECCO working group [dietitians of ECCO]. J. Crohn's Colitis. 11 (12): 1407–1419.

192 192 Yap, Y.A. and Mariño, E. (2018). An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation. Front. Immunol. 9: 2617.

193 193 Sugihara, K., Morhardt, T.L., and Kamada, N. (2019). The role of dietary nutrients in inflammatory bowel disease. Front. Immunol. 9: 3183.

194 194 Li, T., Qiu, Y., Yang, H.S., et al. (2020). Systematic review and meta‐analysis: the association of a pre‐illness Western dietary pattern with the risk of developing inflammatory bowel disease. J Dig Dis. 21 (7): 362–371.

195 195 Wang, H., Shi, P., Zuo, L., et al. (2016). Dietary non‐digestible polysaccharides ameliorate intestinal epithelial barrier dysfunction in IL‐10 knockout mice. J. Crohn's Colitis 10 (9): 1076–1086.

196 196 Witaicenis, A., Fruet, A.C., Salem, L., and Di Stasi, L.C. (2010). Dietary polydextrose prevents inflammatory bowel disease in trinitrobenzenesulfonic acid model of rat colitis. J. Med. Food 13 (6): 1391–1396.

197 197 Machiels, K., Joossens, M., Sabino, J., et al. (2014). A decrease of the butyrate‐producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis.Gut. 63 (8): 1275–1283.

198 198 Wang, W., Chen, L., Zhou, R., et al. (2014). Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate‐producing bacteria in inflammatory bowel disease. J. Clin. Microbiol. 52 (2): 398–406.

199 199 Nagao‐Kitamoto, H. and Kamada, N. (2017). Host‐microbial cross‐talk in inflammatory bowel disease. Immune Netw. 17 (1): 1–12.

200 200 Marchesi, J.R., Holmes, E., Khan, F., et al. (2007). Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 6 (2): 546–551.

201 201 Meng, X., Zhang, G., Cao, H., et al. (2020). Gut dysbacteriosis and intestinal disease: mechanism and treatment.J Appl Microbiol. 129 (4): 787–805.

202 202 Ruemmele, F.M., Veres, G., Kolho, K.L., et al. (2014). Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. J. Crohn's Colitis 8 (10): 1179–1207.

203 203 Sandhu, B.K., Fell, J.M., Beattie, R.M., et al. (2010). Guidelines for the management of inflammatory bowel disease in children in the United Kingdom. J. Pediatr. Gastroenterol. Nutr. 50: Suppl 1, S1–S13.

204 204 Buchanan, E., Gaunt, W.W., Cardigan, T., et al. (2009). The use of exclusive enteral nutrition for induction of remission in children with Crohn's disease demonstrates that disease phenotype does not influence clinical remission.Aliment Pharmacol Ther. 30 (5): 501–507.

205 205 Rubio, A., Pigneur, B., Garnier‐Lengliné, H., et al. (2011). The efficacy of exclusive nutritional therapy in paediatric Crohn's disease, comparing fractionated oral vs. continuous enteral feeding. Aliment Pharmacol Ther. 33 (12): 1332–1339.

206 206 Levine, A. and Wine, E. (2013). Effects of enteral nutrition on Crohn's disease: clues to the impact of diet on disease pathogenesis. Inflamm. Bowel Dis. 19 (6): 1322–1329.

207 207 Gatti, S., Galeazzi, T., Franceschini, E., et al. (2017). Effects of the exclusive enteral nutrition on the microbiota profile of patients with Crohn's disease: a systematic review. Nutrients. 9 (8): 832.

208 208 Gerasimidis, K., Bertz, M., Hanske, L., et al. (2014). Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm. Bowel Dis. 20 (5): 861–871.

209 209 Quince, C., Ijaz, U.Z., Loman, N., et al. (2015). Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition. Am. J. Gastroenterol. 110 (12): 1718–1730.

210 210 Coburn, L.A., Gong, X., Singh, K., et al. (2012). L‐arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS One 7 (3): e33546.

211 211 Xue, H., Sufit, A.J.D., and Wischmeyer, P.E. (2011). Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. JPEN J Parenter Enteral Nutr. 35 (2): 188–197.

212 212 Silveira, A.L.M., Ferreira, A., de Oliveira, M.C., et al. (2017). Preventive rather than therapeutic treatment with high fiber diet attenuates clinical and inflammatory markers of acute and chronic DSS‐induced colitis in mice. Eur. J. Nutr. 56 (1): 179–191.

213 213 Singh, N., Gurav, A., Sivaprakasam, S., et al. (2014). Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 (1): 128–139.

214 214 Maslowski, K., Vieira, A., Ng, A., et al. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461 (7268): 1282–1286.

215 215 Schatzkin, A., Mouw, T., Park, Y., et al. (2007). Dietary fiber and whole‐grain consumption in relation to colorectal cancer in the NIH‐AARP diet and health study. Am. J. Clin. Nutr. 85 (5): 1353–1360.

216 216 Park, Y., Hunter, D.J., Spiegelman, D., et al. (2005). Dietary fiber intake and risk of colorectal cancer ‐ a pooled analysis of prospective cohort studies. JAMA 294 (22): 2849–2857.

217 217 Bingham, S.A., Day, N.E., and Luben, R., et al. (2003). Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study (vol 361, pg 1496, 2003). Lancet 362 (9388): 1000.

218 218 Ahuja, N., Easwaran, H., and Baylin, S.B. (2014). Harnessing the potential of epigenetic therapy to target solid tumors. J. Clin. Invest. 124 (1): 56–63.

219 219 Aminov, R.I., Walker, A.W., Duncan, S.H., et al. (2006). Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl. Environ. Microbiol. 72 (9): 6371–6376.

220 220 Hold, G.L., Schwiertz, A., Aminov, R.I., et al. (2003). Oligonucleotide probes that detect quantitatively significant groups of butyrate‐producing bacteria in human feces. Appl. Environ. Microbiol. 69 (7): 4320–4324.

221 221 Barcenilla, A., Pryde, S.E., Martin, J.C., et al. (2000). Phylogenetic relationships of butyrate‐producing bacteria from the human gut. Appl. Environ. Microbiol. 66 (4): 1654–1661.

222 222 Schwiertz, A., Le Blay, G., and Blaut, M. (2000). Quantification of different Eubacterium spp. in human fecal samples with species‐specific 16S rRNA‐targeted oligonucleotide probes. Appl. Environ. Microbiol. 66 (1): 375–382.

223 223 Li, Q.R., Ding, C.J., Meng, T., et al. (2017). Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J. Pharmacol. Sci. 135 (4): 148–155.

224 224 Chen, J.Z. and Vitetta, L. (2018). Inflammation‐modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin. Colorectal Cancer 17 (3): E541–E544.

225 225 Schwab, J.M., Chiang, N., Aruta, M., and Serhan, C.N. (2007). Resolvin E1 and protectin D1 activate inflammation‐resolution programmes. Nature 447 (7146): 869–874.

226 226 Macfarlane, S. and Macfarlane, G.T. (2003). Regulation of short‐chain fatty acid production. Proc. Nutr. Soc. 62 (1): 67–72.

227 227 Li, F., Hullar, M.A.J., Schwarz, Y., and Lampe, J.W. (2009). Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit‐ and vegetable‐free diet. J. Nutr. 139 (9): 1685–1691.

228 228 Ho, C.L., Tan, H.Q., Chua, K.J., et al. (2018). Engineered commensal microbes for diet‐mediated colorectal‐cancer chemoprevention. Nat. Biomed. Eng. 2 (1): 27–37.

229 229 McCoy, A.N., Araújo‐Pérez, F., Azcárate‐Peril, A., et al. (2013). Fusobacterium is associated with colorectal adenomas. PLoS One 8 (1): e53653.

230 230 Castellarin, M., Warren, R.L., Freeman, J.D., et al. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22 (2): 299–306.

231 231 Kostic, A.D., Gevers, D., Pedamallu, C.S., et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22 (2): 292–298.

232 232 Dejea, C.M., Wick, E.C., Hechenbleikner, E.M., et al. (2014). Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. U.S.A. 111 (51): 18321–18326.

233 233 Al‐Hassi, H.O., Ng, O., and Brookes, M. (2018). Tumour‐associated and non‐tumour‐associated microbiota in colorectal cancer. Gut 67 (2): 395.

234 234 Yang, Z. and Ji, G. (2019). Fusobacterium nucleatum‐positive colorectal cancer. Oncol. Lett. 18 (2): 975–982.

235 235 Mehta, R.S., Nishihara, R., Cao, Y., et al. (2017). Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 3 (7): 921–927.

236 236 Martin, C.R., Osadchiy, V., Kalani, A., and Mayer, E.A. (2018). The brain‐gut‐microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6 (2): 133–148.

237 237 Luna, R.A., Savidge, T.C., and Williams, K.C. (2016). The brain‐gut‐microbiome axis: what role does it play in autism spectrum disorder? Curr. Dev. Disord. Rep. 3 (1): 75–81.

238 238 Vuong, H.E. and Hsiao, E.Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81 (5): 411–423.

239 239 Ghaisas, S., Maher, J., and Kanthasamy, A. (2016). Gut microbiome in health and disease: linking the microbiome‐gut‐brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 158: 52–62.

240 240 Jiang, C., Li, G., Huang, P., et al. (2017). The gut microbiota and Alzheimer's disease. J. Alzheimers Dis. 58: 1–15.

241 241 Peng, B., Xue, G., Xu, D., et al. (2019). Expression and purification of recombinant serine protease domain of human coagulation factor XII in Pichia pastoris. Biosci. Biotechnol. Biochem. 83 (10): 1815–1821.

242 242 Norman, K.L., Shively, C.A., De la Rocha, A.J., et al. (2018). Inositol polyphosphates regulate and predict yeast pseudohyphal growth phenotypes. PLoS Genet. 14 (6): e1007493.

243 243 McElhanon, B.O., McCracken, C., Karpen, S., and Sharp, W.G. (2014). Gastrointestinal symptoms in autism spectrum disorder: a meta‐analysis. Pediatrics 133 (5): 872–883.

244 244 Parracho, H.M., Bingham, M.O., Gibson, G.R., and Mccartney, A. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol 54 (10): 987–991.

245 245 Finegold, S.M., Molitoris, D., Song, Y., et al. (2002). Gastrointestinal microflora studies in late‐onset autism. Clin. Infect. Dis. 35 (Suppl. 1): S6–S16.

246 246 Song, Y., Liu, C., and Finegold, S.M. (2004). Real‐time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 70 (11): 6459–6465.

247 247 Williams, B.L., Hornig, M., Buie, T., et al. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 6 (9): e24585.

248 248 Kang, D.‐W., Park, J.G., Ilhan, Z.E., et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8 (7): e68322.

249 249 Saurman, V., Margolis, K.G., and Luna, R.A. (2020). Autism spectrum disorder as a brain‐gut‐microbiome axis disorder. Dig. Dis. Sci. 65 (3): 818–828.

250 250 Navarro, F., Pearson, D.A., Fatheree, N., et al. (2015). Are ‘leaky gut’ and behavior associated with gluten and dairy containing diet in children with autism spectrum disorders? Nutr. Neurosci. 18 (4): 177–185.

251 251 Hyman, S.L., Stewart, P.A., Foley, J., et al. (2016). The gluten‐free/casein‐free diet: a double‐blind challenge trial in children with autism. J. Autism Dev. Disord. 46 (1): 205–220.

252 252 Ghalichi, F., Ghaemmaghami, J., Malek, A., and Ostadrahimi, A. (2016). Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J. Pediatr. 12 (4): 436–442.

253 253 Newell, C., Bomhof, M.R., Reimer, R.A., et al. (2016). Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism. 7 (1): 37.

254 254 Kraeuter, A.‐K., Phillips, R., and Sarnyai, Z. (2020). Ketogenic therapy in neurodegenerative and psychiatric disorders: from mice to men. Prog. Neuro‐Psychopharmacol. Biol. Psychiatry 101: 109913.

255 255 Sanctuary, M.R., Kain, J.N., Chen, S.Y., et al. (2019). Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One 14 (1): e0210064.

256 256 Arnold, L.E., Luna, R.A., Williams, K., et al. (2019). Probiotics for gastrointestinal symptoms and quality of life in autism: a placebo‐controlled pilot trial. J. Child Adolesc. Psychopharmacol. 29 (9): 659–669.

257 257 Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167 (6): 1469–1480.e12.

258 258 Miraglia, F. and Colla, E. (2019). Microbiome, Parkinson's disease and molecular mimicry. Cells 8 (3): 222.

259 259 Vuotto, C., Battistini, L., Caltagirone, C., and Borsellino, G. (2020). Gut microbiota and disorders of the central nervous system. Neuroscientist, p. https://doi.org/10.1177/1073858420918826.

260 260 Akbari, E., Asemi, Z., Kakhaki, R.D., Bahmani, F., et al. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double‐blind and controlled trial. Frontiers in aging neuroscience, 8, 256.

261 261 Castelli, V., d'Angelo, M., Lombardi, F., Alfonsetti, M., et al. (2020). Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging‐Us 12 (5): 4641–4659.

262 262 Wu, F., Guo, X., Zhang, M., Ou, Z., et al. (2020). An Akkermansia muciniphila subtype alleviates high‐fat diet‐induced metabolic disorders and inhibits the neurodegenerative process in mice. Anaerobe 61:102138

263 263 Costa, J., Lunet, N., Santos, C., Santos, J., et al. (2010). Caffeine exposure and the risk of Parkinson's disease: a systematic review and meta‐analysis of observational studies. J. Alzheimers Dis. 20 (Suppl. 1): S221–S238.

264 264 Khadrawy, Y.A., Salem, A.M., EI‐Shamy, K.A., Ahmed, E.K., et al. (2017). Neuroprotective and therapeutic effect of caffeine on the rat model of Parkinson's disease induced by rotenone. J. Dietary Suppl. 14 (5): 553–572.

265 265 Sonsalla, P.K., Wong, L.Y., Harris, S.L., Richardson, J.R., et al. (2012). Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson's disease. Exp. Neurol. 234 (2): 482–487.

266 266 Yang, X. and Cheng, B. (2010). Neuroprotective and anti‐inflammatory activities of ketogenic diet on MPTP‐induced neurotoxicity. J. Mol. Neurosci. 42 (2): 145–153.

267 267 Phillips, M.C.L., Murtagh, D.K.J., Gilbertson, L.J., Asztely, F.J.S., et al. (2018). Low‐fat versus ketogenic diet in Parkinson's disease: a pilot randomized controlled trial. Mov Disord. 33 (8): 1306–1314.

268 268 Taylor, M.K., Sullivan, D.K., Mahnken, J.D., Burns, J.M., et al. (2018). Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer's disease. Alzheimer's & Dement.: Transl. Res. Clin. Interv. 4: 28–36.

269 269 Brownlow, M.L., Benner, L., D'Agostino, D., Gordon, M.N., et al. (2013). Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer's pathology. PLoS One 8 (9): e75713.

270 270 Van der Auwera, I., Wera, S., Leuven, F.V., and Henderson, S.T. (2005). A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease. Nutr. Metab. 2 (1): 28.

271 271 Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 101 (44): 15718–15723.

272 272 Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341 (6150): 1079–U49.

273 273 Sanz, Y. and Santacruz, A. (2008). Evidence on the role of gut microbes in obesity Revisión. Rev. Esp. Obesidad 6 (5): 256‐263.

274 274 Hooper, L.V., Wong, M.H., Thelin, A., Hansson, L., et al. (2001). Molecular analysis of commensal host‐microbial relationships in the intestine. Science. 291 (5505): 881–884.

275 275 Backhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I. (2007). Mechanisms underlying the resistance to diet‐induced obesity in germ‐free mice. Proc. Natl. Acad. Sci. U.S.A. 104 (3): 979–984.

276 276 Cani, P.D., Possemiers, S., Van de Wiele, T., Guiot, Y., et al. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP‐2‐driven improvement of gut permeability. Gut 58 (8): 1091–1103.

277 277 van Nood, E., Vrieze, A., Nieuwdrop, M., Fuentes, S., et al. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368 (5): 407–415.

278 278 Everard, A., Lazarevic, V., Derrien, M., Girard, M., et al. (2011). Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet‐induced leptin‐resistant mice. Diabetes 60 (11): 2775–2786.

279 279 Cohen, J.C., Horton, J.D., and Hobbs, H.H. (2011). Human fatty liver disease: old questions and new insights. Science 332 (6037): 1519–1523.

280 280 Socha, P., Wierzbicka, A., Murawska, J.N., Wlodarek, D., et al. (2007). Nonalcoholic fatty liver disease as a feature of the metabolic syndrome. Rocz. Panstw. Zakl. Hig. 58 (1): 129–137.

281 281 Compare, D., Coccoli, P., Rocco, A., Nardone, O.M., et al. (2012). Gut–liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 22 (6): 471–476.

282 282 Abu‐Shanab, A. and Quigley, E.M. (2010). The role of the gut microbiota in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7 (12): 691–701.

283 283 Miura, K. and Ohnishi, H. (2014). Role of gut microbiota and Toll‐like receptors in nonalcoholic fatty liver disease. World J. Gastroenterol. 20 (23): 7381–7391.

284 284 Delzenne, N.M., Cani, P.D., and Neyrinck, A.M. (2007). Modulation of glucagon‐like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J. Nutr. 137 (11): 2547S–2551S.

285 285 Barton, W., Penney, N.C., Cronin, O., Garcia‐Perez, I., et al. (2017). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 67 (4): 625–633.

286 286 Human Microbiome Project. https://www.hmpdacc.org/ (accessed 14 December 2021).

287 287 The EC MetaHIT programme. http://www.metahit.eu/ (accessed 14 December 2021).

288 288 The Microsetta Initiative. https://microsetta.ucsd.edu/ (accessed 14 December 2021).

289 289 MMHP: Million Microbiomes from Humans Project. https://db.cngb.org/mmhp/ (accessed 14 December 2021).

290 290 DNBseq™ Technology. https://www.bgi.com/us/dnbseq-ngs-technology/ (accessed 14 December 2021).

291 291 Data Analysis and Coordination Center (DACC). https://hmpdacc.org/hmp/ (accessed 14 December 2021).

292 292 Metagenomics of the Elderly programme.http://eldermet.ucc.ie/ https://www.ucc.ie/en/charge‐ucc/eldermet/ (accessed 8 February 2022).

293 293 Canadian Microbiome Initiative. https://cihr-irsc.gc.ca/e/51498.html (accessed 14 Decmeber 2021).

294 294 Nishijima, S., Suda, W., Oshima, K., Kim, S., et al. (2016). The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23 (2): 125–133.

295 295 The Biocodex Microbiota Foundation. https://www.biocodexmicrobiotafoundation.com/foundation (accessed 14 December 2021).

296 296 The Crohn's & Colitis Foundation.https://site.crohnscolitisfoundation.org/ https://www.crohnscolitisfoundation.org/ (accessed 8 February 2022).

297 297 The W.GARFIELD WESTON foundation. https://www.westonfoundation.org/our-initiatives/wfmi/ (accessed 14 December 2021).

298 298 The Wisconsin Alumni Research Foundation (WARF). https://research.wisc.edu/funding/microbiome-initiative/ (accessed 14 December 2021).

Principles in Microbiome Engineering

Подняться наверх