Читать книгу Nitric Oxide in Plants - Группа авторов - Страница 18

References

Оглавление

1 Able, A.J. (2003). Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221: 137–143.

2 Ahmad, P., Abdel Latef, A.A., Hashem, A. et al. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science 7: 1–11. doi:10.3389/fpls.2016.00347.

3 Ahmad, P., Ahanger, M.A., Alyemeni, M.N. et al. (2018). Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255 (1): 79–93.

4 Alamillo, J.M. and Garcia-Olmedo, F. (2001). Effects of urate, a natural inhibitor of peroxynitrite mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. The Plant Journal 25: 529–540.

5 Albertos, P., Romero-Puertas, M.C., Tatematsu, K. et al. (2015). S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nature Communications 6: 8669.

6 Amooaghaie, R. and Nikzad, K. (2013). The role of nitric oxide in priming-induced low-temperature tolerance in two genotypes of tomato. Seed Science Research 23: b1–b4. doi:10.1017/S0960258513000068.

7 Aroca, Á., Serna, A., Gotor, C. et al. (2015). S-sulfhydration: a new post-translational modification in plant systems. Plant Physiology 168: 334–342.

8 Arora, D. and Bhatla, S.C. (2017). Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine 106: 315–328. doi:10.1016/j.freeradbiomed.2017.02.042.

9 Arteel, G.E., Briviba, K., and Sies, H. (1999). Protection against peroxynitrite. FEBS Letters 445: 226–230.

10 Asgher, M., Per, T.S., Masood, A. et al. (2017). Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environmental Science and Pollution Research 24: 2273–2285. doi:10.1007/s11356-016-7947-8.

11 Babaei, S., Niknam, V., and Behmanesh, M. (2020). Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosystems 155: 73–82. doi:10.1080/11263504.2020.1727975.

12 Barakat, A., Staton, M., Cheng, C.-H. et al. (2012). Chestnut resistance to the blight disease: insights from transcriptome analysis. BMC Plant Biology 12: 38. doi:10.1186/1471-2229-12-38.

13 Batista, P.F., Costa, A.C., Müller, C. et al. (2018). Nitric oxide mitigates the effect of water deficit in Crambe abyssinica. Plant Physiology and Biochemistry. doi:10.1016/j.plaphy.2018.06.012.

14 Belenghi, B., Romero-Puertas, M.C., Vercammen, D. et al. (2007). Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of critical cysteine residue. Journal of Biological Chemistry 282: 1352–1358.

15 Bennett, M., Mehta, M., and Grant, M. (2005). Biophoton imaging: a non-destructive method for assaying R gene responses. Molecular Plant–Microbe Interactions 82: 95–102.

16 Bethke, P.C., Libourel, I.G., and Jones, R.L. (2007). Nitric oxide in seed dormancy and germination. In: Annual Plant Reviews Vol. 27: Seed Development, Dormancy and Germination (eds. K.J. Bradford and H. Nonogaki), 153–175. Oxford, UK: Blackwell Publishing Ltd.

17 Bhuyan, M.H.M.B., Hasanuzzaman, M., Parvin, K. et al. (2020). Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regulation 90: 409–424. doi:10.1007/s10725-020-00594-4.

18 Bouchereau, A., Aziz, A., Larher, F. et al. (1999). Polyamines and environmental challenges: recent developments. Plant Science 140: 103–125.

19 Bozhkov, P.V., Suarez, M.F., Filonova, L.H. et al. (2005). Cysteine protease mcll-Pa executes programmed cell death during plant embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 102: 14463–14468.

20 Cao, N., Zhan, B., and Zhou, X. (2019). Nitric oxide as a downstream signaling molecule in brassinosteroid-mediated virus susceptibility to maize chlorotic mottle virus in maize. Viruses 11: 368. doi:10.3390/v11040368.

21 Castillo, M.C., Lozano-Juste, J., Gonzalez-Guzman, M. et al. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling 8: ra89.

22 Chakraborty, N. and Acharya, K. (2017). “NO way”! Says the plant to abiotic stress. Plant Gene 11: 99–105.

23 Chen, Z.H., Wang, Y., Wang, J.W. et al. (2016). Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytologist 209: 1456–1469. doi:10.1111/nph.13714.

24 Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T. et al. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant Journal 24: 667–677.

25 Corpas, F. and Palma, J. (2018). Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen 1: 3. doi:10.3390/nitrogen1010003.

26 Corpas, F.J., Barroso, J.B., Carreras, A. et al. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224: 246–254.

27 Corpas, F.J., González-Gordo, S., Cañas, A. et al. (2019). Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 70: 4391–4404.

28 Dadasoglu, E., Ekinci, M., Kul, R. et al. (2020). Nitric oxide enhances salt tolerance through regulating antioxidant enzyme activity and nutrient uptake in pea. Legume Research 44: 41–45. doi:10.18805/LR-540.

29 Delledonne, M. (2005). NO news is good news for plants. Current Opinion in Plant Biology 8: 390–396.

30 Delledonne, M., Xia, Y.J., Dixon, R.A. et al. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588.

31 Delledonne, M., Zeier, J., Marocco, A. et al. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America 98: 13454–13459.

32 Del Pozo, O. and Lam, E. (2003). Expression of the baculovirus p35 protein in tobacco inhibits hypersensitive response cell death and compromises N gene-mediated disease resistance in response to tobacco mosaic virus. Molecular Plant–Microbe Interactions 16: 485–494.

33 del Río, L.A., Corpas, F.J., and Barroso, J.B. (2004). Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783–792.

34 Deng, X.G., Zhu, T., Zou, L.J. et al. (2016). Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. The Plant Journal 85: 478–493.

35 Desikan, R., Griffiths, R., Hancock, J. et al. (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 99: 16314–16318.

36 de Pinto, M.C., Tomassi, F., and de Gara, L. (2002). Changes in the antioxidant systems as a part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiology 130: 689–708.

37 Diaz, M., Achkor, H., Titarenko, E. et al. (2003). The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Letters 543: 136–139.

38 Dickmann, M.B., Park, Y.K., Oltersdorf, T. et al. (2001). Abrogation of disease development in plants expressing animal antiapoptotic genes. Proceedings of the National Academy of Sciences of the United States of America 98: 6957–6962.

39 Dong, N., Li, Y., Qi, J. et al. (2018). Nitric oxide synthase dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Scientia Horticulturae 230: 68–77.

40 D’Silva, I., Poirier, G.G., and Heath, M.C. (1998). Activation of cysteine proteases in cowpea plants during the hypersensitive response: a form of programmed cell death. Experimental Cell Research 245: 389–399.

41 Du, S., Liu, Y., Zhang, P. et al. (2015). Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chemistry 173: 905–911. doi:10.1016/j.foodchem.2014.10.115.

42 Durner, J. and Klessig, D.F. (1999). Nitric oxide as a signal in plants. Current Opinion in Plant Biology 2: 369–374.

43 Durner, J., Wendehenne, D., and Klessig, D.F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose. Proceedings of the National Academy of Sciences of the United States of America 95: 10328–10333.

44 Dwivedi, P., Kumari, A., and Singh, B.N. (2016). Enhanced antioxidant system re-programmes oxidative stress through hypersensitive response in leaves of rice plant challenged with Aspergillus species. International Journal of Agriculture, Environment and Biotechnology 9 (2): 201–208.

45 Ederli, L., Bianchet, C., Paolocci, F. et al. (2019). Drought stress induces a biphasic NO accumulation in Arabidopsis thaliana. Plant Signaling and Behavior 14 (3): e1573098. doi:10.1080/15592324.2019.1573098.

46 Ederli, L., Morettini, R., Borgogni, A. et al. (2006). Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiology 142: 595e608. doi:10.1104/pp.106.085472.

47 Fan, H., Guo, S., Jiao, Y. et al. (2007). Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Frontiers of Agriculture in China 1: 308–314.doi:10.1007/s11703-007-0052-5.

48 Fan, H.F., Du, C.X., and Guo, S.R. (2013). Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environmental and Experimental Botany 86: 52–59. doi:10.1016/j.envexpbot.2010.09.007.

49 Feechan, A., Kwon, E., Yun, B.W. et al. (2005). A central role for S-nitrosothiols in plant disease resistance. PNAS 102: 8054–8059.

50 Ferrer, M.A. and Ros-Barcelo, A. (1999). Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant, Cell and Environment 22: 891–897.

51 Filippou, P., Bouchagier, P., Skotti, E., and Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany 97: 1–10. doi:10.1016/j.envexpbot.2013.09.010.

52 Foissner, I., Wendehenne, D., Langebartels, C. et al. (2000). In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant Journal 23: 817–824.

53 Fröhlich, A. and Durner, J. (2011). The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Science 181: 401–404.

54 Gadelha, C.G., de Souza Miranda, R., Alencar, N.L.M. et al. (2017). Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. Journal of Plant Physiology 212: 69–79. doi:10.1016/j.jplph.2017.02.005.

55 Garcia, M.C., Gay, R., Sokolovski, S. et al. (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proceedings of the National Academy of Sciences of the United States of America 100: 11116–111121.

56 Garcia-Mata, C. and Lamattina, L. (2001). Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology 126: 1196–1204.

57 Garcia-Mata, C. and Lamattina, L. (2002). Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology 128: 790–792.

58 Garcia-Mata, C. and Lamattina, L. (2013). Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Science 201–202: 66–73. doi:10.1016/j.plantsci.2012.11.007.

59 Garcia-Olmedo, F., Rodrigguez-Palenzulea, P., Molina, A. et al. (2001). Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Letters 489: 219–222.

60 Giba, Z., Grubisic, D., and Konjevic, R. (2007). Seeking the role of NO in breaking seed dormancy. In: Nitric Oxide in Plant Growth, Development and Stress Physiology (eds. L. Lamattina and J. Polacco), 91–111. Berlin, Heidelberg, Germany: Springer.

61 Gouvea, C.M.C.P., Souza, J.F., and Magalhaes, M.I.S. (1997). NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation 21: 183–187.

62 Greco, M., Chiappetta, A., Bruno, L. et al. (2012). In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. Journal of Experimental Botany 63: 695–709. doi:10.1093/jxb/err313.

63 Grubisic, D., Giba, Z., and Konjevic, R. (1992). The effect of organic nitrates in phytochrome controlled germination of Paulownia tomentosa seeds. Photochemistry and Photobiology 56: 629–632.

64 Gupta, K.J., Igamberdiev, A.U., Manjunatha, G. et al. (2011). The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Science 181: 520–526.

65 Gupta, K.J. and Kaiser, W.M. (2010). Production and scavenging of nitric oxide by barley root mitochondria. Plant and Cell Physiology 51: 576–584.

66 Hasanuzzaman, M., Nahar, K., Alam, M.M. et al. (2018). Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry 126: 173–186.

67 Hatsugai, N., Kuroyanagi, M., Yamada, K. et al. (2004). A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305: 855–858.

68 Hayat, S., Yadav, S., Ali, B. et al. (2010). Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russian Journal of Plant Physiology 57: 212–221.

69 He, H.Y., He, L.F., Gu, M.H. et al. (2012). Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Science 183: 123–130.

70 Hebelstrup, K., Shah, J., and Igamberdiev, A. (2013). The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiologia Plantarum 148: 457–469. doi:10.1111/ppl.12062.

71 Hichri, I., Boscari, A., Castella, C. et al. (2015). Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. Journal of Experimental Botany 66: 2877–2887. doi:10.1093/jxb/erv051.

72 Huang, X., Stettmaier, K., Michel, C. et al. (2004). Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218: 938–946.

73 Hung, K.T. and Kao, C.H. (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology 160: 871–879.

74 Jovanovic, V., Giba, Z., Djokovic, D. et al. (2005). Gibberellic acid nitrite stimulates germination of two species of light-requiring seeds via the nitric oxide pathway. Annals of the New York Academy of Sciences 1048: 476–481.

75 Kaur, H. and Bhatla, S.C. (2016). Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59: 42–53. doi:10.1016/j.niox.2016.07.001.

76 Khairy, A.I.H., Oh, M.J., Lee, S.M. et al. (2016). Nitric oxide overcomes Cd and Cu toxicity in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase. Biochimie Open 2: 41e51.

77 Khator, K., Saxena, I., and Shekhawat, G.S. (2021). Nitric oxide induced Cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. BioMetals 34: 15–32. doi:10.1007/s10534-020-00259-9.

78 Klepper, L.A. (1979). Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmospheric Environment 13: 537–542.

79 Kohli, S.K. et al. (2019). A current scenario on role of brassinosteroids in plant defense triggered in response to biotic challenges. In: Brassinosteroids: Plant Growth and Development (eds. S. Hayat, M. Yusuf, R. Bhardwaj, and A. Bajguz). Singapore: Springer. doi:10.1007/978-981-13-6058-9_13.

80 Kopyra, M. and Gwóźdź, E.A. (2003). Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry 41: 1011–1017.

81 Kovacs, I., Durner, J., and Lindermayr, C. (2015). Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. The New Phytologist 208: 860–872. doi:10.1111/nph.13502.

82 Kushwaha, B.K., Singh, S., Tripathi, D.K. et al. (2019). New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. Journal of Hazardous Materials 361: 134–140.

83 Lamattina, L., García-Mata, C., Graziano, M. et al. (2003). Nitric oxide: the versatility of an extensive signal molecule. Annual Review of Plant Biology 54: 109–136.

84 Lau, S.-E., Hamdan, M.F., Pua, T.-L. et al. (2021). Plant nitric oxide signaling under drought stress. Plants 10 (2): 360. doi:10.3390/plants10020360.

85 Lee, H.Y., Byeon, Y., Tan, D.X. et al. (2015). Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. Journal of Pineal Research 58: 291–299.

86 Lee, K., Choi, G.H., and Back, K. (2017). Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. Journal of Pineal Research 63: e12441.

87 Leshem, Y.Y., Wills, R.B.H., and Ku, V.-V.-V. (1998). Evidence for the function of the free radical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry 36: 825–833.

88 Levine, A., Tenhaken, R., Dixon, R. et al. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

89 Li, X., Zhang, L., Ahammed, G.J. et al. (2017). Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. Journal of Plant Physiology 214. doi:10.1016/j.jplph.2017.04.005.

90 Liu, S., Dong, Y., Xu, L. et al. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation 73: 67–78.

91 Liu, W., Li, R.-J., Han, T.-T. et al. (2015a). Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiology 168: 343–356. doi:10.1104/pp.15.00030.

92 Lozano-Juste, J. and León, J. (2011). Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiology 156: 1410–1423.

93 Mackerness, S.A.H., John, C.F., Jordan, B. et al. (2001). Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Letters 489: 237–242.

94 Manjunatha, G., Lokesh, V., and Neelwarne, B. (2010). Nitric oxide in fruit ripening: trends and opportunities. Biotechnology Advances 2: 489–499.

95 Mishina, T.E., Lamb, C., and Zeier, J. (2007). Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell and Environment 30: 39–52.

96 Modolo, L.V., Augusto, O., Almeida, I.M.G. et al. (2006). Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Science 171: 34–40.

97 Modolo, L.V., Cunha, F.Q., Braga, M.R. et al. (2002). Nitric oxide synthase mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. eridionalis elicitor. Plant Physiology 130: 1288–1297.

98 Moreau, M., Lindermayr, C., Durner, J. et al. (2010). NO synthesis and signaling in plants – where do we stand? Plant Physiology 138: 372–383.

99 Mur, L.A.J., Carver, T.L.W., and Prats, E. (2005). NO way to live; the various roles of nitric oxide in plant–pathogen interaction. Journal of Experimental Botany 57: 489–505.

100 Murgia, I., Delledonne, M., and Soave, C. (2002). Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant Journal 30: 521–528.

101 Nabi, R.B.S., Tayadea, R., Hussain, A. et al. (2019). Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany 161: 120–133.

102 Nahar, K., Hasanuzzaman, M., Alam, M.M. et al. (2016). Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology and Environmental Safety 126: 245–255.

103 Navarre, D.A., Wendehenne, D., Durner, J. et al. (2000). Nitric oxide modulates the activity of tobacco aconitese. Plant Physiology 122: 573–582.

104 Neill, S., Barros, R., Bright, J. et al. (2008). Nitric oxide, stomatal closure, and abiotic stress. Journal of Experimental Botany 59: 165–176.

105 Neill, S.J., Desikan, R., Clarke, A. et al. (2002). Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiology 128: 13–16.

106 Neill, S.J., Desikan, R., and Hancock, J.T. (2003). Nitric oxide signalling in plants. New Phytologist 159: 11–35.

107 Noritake, T., Kawakita, K., and Doke, N. (1996). Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiology 37: 113–116.

108 Noronha-Dutra, A.A., Epperlein, M.M., and Woolf, N. (1993). Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Letters 321: 59–62.

109 Orozco-Cardenas, M.L. and Ryan, C.A. (2002). Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiology 130: 487–493.

110 Pagnussat, G.C., Simontacchi, M., Puntarulo, S. et al. (2002). Nitric oxide is required for root organogenesis. Plant Physiology 129: 954–956.

111 Palmer, R.M.J., Ferrige, A.J., and Moncada, S. (1987). Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526.

112 Parani, M., Rudrabhatla, S., Myers, R. et al. (2004). Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnology Journal 2: 359–366.

113 Pedroso, M.C., Magalhaes, J.R., and Durzan, D. (2000). A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. Journal of Experimental Botany 51: 1027–1036.

114 Peto, A., Lehotai, N., Feigl, G. et al. (2013). Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Reports 32: 1913e1923.

115 Polverari, A., Molesini, B., Pezzotti, M. et al. (2003). Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Molecular Plant–Microbe Interactions 16: 1094–1111.

116 Prado, A.M., Colaço, R., Moreno, N. et al. (2008). Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. Molecular Plant 1: 703–714.

117 Prats, E., Mur, L.A.J., Sanderson, R. et al. (2005). Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. Hordei. Molecular Plant Pathology 6: 65–78.

118 Procházková, D. and Wilhelmová, N. (2011). Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide 24: 61–65.

119 Rai, K.K., Rai, N., and Rai, S.P. (2018). Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L. plants by regulating bio-physical processes and DNA methylation. Plant Physiology and Biochemistry 128: 72–88.

120 Rockel, P., Strube, F., Rockel, A. et al. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany 53: 103–110.

121 Rojo, E., Martin, R., Carter, C. et al. (2004). VPEg exhibits a caspase-like activity that contributes to defense against pathogens. Current Biology 14: 1897–1906.

122 Romero-Puertas, M.C., Perazzolli, M., Zago, E.D. et al. (2004). Nitric oxide signaling functions in plant–pathogen interactions. Cellular Microbiology 6: 795–803.

123 Rőszer, T. (2012a). Nitric oxide synthesis in leaf peroxisomes and in plant-type mitochondria. In: The Biology of Subcellular Nitric Oxide (ed. T. Rőszer), 67–80. New York: Springer.

124 Rőszer, T. (2012b). Nitric oxide synthesis in the chloroplast. In: The Biology of Subcellular Nitric Oxide (ed. T. Rőszer), 49–66. New York: Springer.

125 Rőszer, T. (2014). Biosynthesis of nitric oxide in plants. In: Nitric Oxide in Plants: Metabolism and Role in Stress Physiology (eds. M. Khan, M. Mobin, F. Mohammad, and F. Corpas). Cham, Switzerland: Springer. doi:10.1007/978-3-319-06710-0_2.

126 Roychoudhury, A., Singh, A., Aftab, T. et al. (2021). Seedling priming with sodium nitroprusside rescues Vigna radiata from salinity stress-induced oxidative damages. Journal of Plant Growth Regulation 1: 1–12: doi:10.1007/s00344-021-10328-z.

127 Sadeghipour, O. (2016). Pretreatment with nitric oxide reduces lead toxicity in cowpea (Vigna unguiculata L. Walp.). Archives of Biological Sciences 68: 165e175.

128 Sami, F., Siddiqui, H., Alam, P. et al. (2021). Nitric oxide mitigates the salt-induced oxidative damage in mustard by upregulating the activity of various enzymes. Journal of Plant Growth Regulation. 213: 1–13. doi:10.1007/s00344-021-10331-4.

129 Sanz, L., Albertos, P., Mateos, I. et al. (2015). Nitric oxide (NO) and phytohormones crosstalk during early plant development. Journal of Experimental Botany 66: 2857–2868.

130 Seligman, K., Saviani, E.E., Oliveira, H.C. et al. (2008). Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant and Cell Physiology 49 (7): 1112–1121.

131 Shao, R., Wang, K., and Shangguan, Z. (2010). Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. Journal of Plant Physiology 167: 472–479.

132 Shen, Q., Wang, Y.T., Tian, H. et al. (2013). Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis. Molecular Plant 6: 1214–1225.

133 Shen, Z.J., Chen, J., Ghoto, K. et al. (2018). Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiology 38: 1605–1622.

134 Shi, C., Qi, C., Ren, H. et al. (2015). Ethylene mediates brassinosteroid induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. The Plant Journal 82: 280–301.

135 Shi, H., Ye, T., Zhu, J.K. et al. (2014). Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany 65: 4119–4131. doi:10.1093/jxb/eru184.

136 Shi, S., Wang, G., Wang, Y. et al. (2005). Protective effect of nitric oxide against oxidative stress under ultraviolet-B irradiation. Nitric Oxide 13: 1–9.

137 Smirnoff, N. (2000). Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology 3: 229–235.

138 Song, F. and Goodman, R.M. (2001). Activity of nitric oxide is dependent on, but is partially required for function of salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Molecular Plant–Microbe Interactions 12: 1458–1462.

139 Tada, Y., Mori, T., Shinogi, T. et al. (2004). Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Molecular Plant–Microbe Interactions 17: 245–253.

140 Tian, X. and Lei, Y. (2006). Nitric oxide treatment alleviates drought stress in wheat seedlings. Biologia Plantarum 50: 775–778. doi:10.1007/s10535-006-0129-7.

141 Tischner, R., Planchet, E., and Kaiser, W.M. (2004). Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Letters 576: 151–155.

142 Tossi, V., Lamattina, L., and Cassia, R. (2009). An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytologist 18: 871–879.

143 Tun, N.N., Santa-Catarina, C., Begum, T. et al. (2006). Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant and Cell Physiology 47: 346–354.

144 Uchida, A., Jagendorf, A.T., Hibino, T. et al. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science 163 (3): 515–523.

145 Uhida, A., Jagendorf, T., Hibino, T. et al. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science 163: 515–523.

146 Valderrama, R., Corpas, F.J., Carreras, A. et al. (2007). Nitrosative stress in plants. FEBS Letters 581: 453–461.

147 Vital, R.G., Müller, C., Fabia, B. et al. (2019). Nitric oxide increases the physiological and biochemical stability of soybean plants under high temperature. Agronomy 9: 412. doi:10.3390/agronomy9080412.

148 Vleehouwers, V.G.A.A., van Dooijeweert, W., Govers, F. et al. (2000). The hypersensitive response is associated with host and nonhost resistance to Phytophtora infestans. Planta 210: 853–864.

149 Wang, X., Li, Q., Yang, M. et al. (2020). Crosstalk between hydrogen peroxide and nitric oxide mediates priming‐induced drought tolerance in wheat. Journal of Agronomy and Crop Science 207 (2): 224–235. doi:10.1111/jac.12458.

150 Wang, X.S. and Han, J.G. (2007). Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Journal of Soil Science and Plant Nutrition 53 (3): 278–285. doi:10.1111/j.1747-0765.2007.00135.x.

151 Wei, L., Zhang, J., Wang, C. et al. (2020). Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiology and Biochemistry 147: 161–171. doi:10.1016/j.plaphy.2019.12.021.

152 Wendehenne, D., Pugin, A., Klessig, D. et al. (2001). Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science 6: 177–183.

153 Wu, A.P., Gong, L., Chen, X. et al. (2014). Interactions between nitric oxide, gibberellic acid, and phosphorus regulate primary root growth in Arabidopsis. Plant Biology 58: 335–340.

154 Xu, J., Wang, W., Yin, H. et al. (2010). Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 32: 321–330.

155 Yamasaki, H., Shimoji, H., Ohshiro, Y. et al. (2001). Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide – Biology and Chemistry 5: 261–270.

156 Yuan, H.M. and Huang, X. (2016). Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell and Environment 39: 120–135.

157 Yuanjie, D., Wei-Feng, C., Xiaoying, B. et al. (2019). Effects of exogenous nitric oxide and 24-epibrassinolide on physiological characteristics of peanut under cadmium stress. Pedosphere 29: 45–59. doi:10.1016/S1002-0160(17)60376.

158 Zafra, A., Rodríguez-García, M.I., and Alché, J.D. (2010). Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biology 10: 36–53.

159 Zago, E., Morsa, S., Dat, J.F. et al. (2006). Nitric oxide and hydrogen peroxide responsive gene regulation during cell death induction in tobacco. Plant Physiology 141: 40411.

160 Zeier, J., Delledonne, M., Mishina, T. et al. (2004). Genetic elucidation of nitric oxide signaling in incompatible plant–pathogen interactions. Plant Physiology 136: 2875–2886.

161 Zhang, Y., Wang, L., Liu, Y. et al. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224: 545–555.

162 Zhao, J., Fujita, K., and Sakai, K. (2005). Oxidative stress in plant cell culture: a role in production of beta-thujaplicin by Cupressus lusitanica cultures. Biotechnology and Bioengineering 90: 621.

163 Zhao, L., Chen, L., Gu, P. et al. (2019). Exogenous application of melatonin improves plant resistance to virus infection. Plant Pathology. 68: 1287–1296. doi:10.1111/ppa.13057.

164 Zhao, Z., Chen, G., and Zhang, C. (2001). Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Australian Journal of Plant Physiology 28: 1055–1061.

165 Zhao, Z., Zhang, F., Guo, J. et al. (2004). Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiology 134: 849–857.

166 Zou, L.J., Deng, X.G., Zhang, L.E. et al. (2018). Nitric oxide as a signaling molecule in brassinosteroid mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiologia Plantarum 163: 196–210.

Nitric Oxide in Plants

Подняться наверх