Читать книгу The Science of Reading - Группа авторов - Страница 33
Disruptions in the word‐identification system (revisited)
ОглавлениеWe should expect universal neural patterns associated with disruption in the word‐identification system for two related reasons: 1) the apparent existence of brain reading networks that include universal components; and 2) the language constraint that all writing systems map graphs to language. However, manifestations of word‐reading problems, including dyslexia, may vary with how the writing system makes demands on phonology. Such variation may depend on the level of phonological mapping – the grain size, phoneme or syllable (Wydell, 2019) – and the extent to which meaning encoded in morphology‐preserving orthography can compensate for a phonological deficit.
Chinese provides both of these. It maps syllables rather than phonemes and it has meaning cues in its morphological orthography that may further reduce the demands of phonology. The abjads of Hebrew and Arabic and the alpha‐syllabaries make additional demands on orthographic‐morphological processing, seemingly without substantially reducing the demands of phonology. Indeed, Chinese seems to require a multiple‐cause model that includes nonphonological sources. Phonological problems are found (Ho et al., 2000), but so too are associations of reading problems with rapid naming and orthographic knowledge (Ho et al., 2002) and morphology (Shu et al., 2006). Underactivation in the left middle frontal gyrus in Chinese readers with dyslexia appears more common than in alphabetic readers with dyslexia (Siok et al., 2004). If the LMFG supports neural‐motor preparation for character writing as part of character recognition (Cao & Perfetti, 2017), this may suggest an orthographic factor in Chinese dyslexia.
Visual‐orthographic processing challenges may be expected in Chinese, given the demands of learning around 3,000 characters in the first six years of school (see McBride‐Chang et al., this volume). Visual attention and copying skills have been found to predict reading ability of children in Hong Kong (Liu et al., 2015). In the multicause analysis, Chinese reading has phonological dyslexia, but fewer cases compared with alphabetic reading and even fewer cases with phonology as the only factor. Both visual‐orthographic processes and knowledge of Chinese compounding morphology may be important factors (McBride‐Chang, Lam et al., 2011). Interestingly, modeling of Chinese dyslexia (Yang et al., 2009; Zevin, 2019) suggested that either a morpho‐semantic or phonological disturbance produced wide‐ranging character reading problems in Chinese; in contrast, a semantic disturbance in English affected only identification of exception words.
The conclusion across writing systems might be that Chinese requires explanations of reading problems based on multiple factors, more than other systems. Phonological, morphological, and visual‐orthographic factors have been identified in behavioral research and inferred from brain imaging. However, these factors are likely to play a role in reading and reading problems across writing systems, including alphabetic. Perhaps, in the word‐identification system, languages and writing systems affect only the relative prominence of the various knowledge sources and processes that act on them, providing a picture of core universality and systematic variation.