Читать книгу The Science of Reading - Группа авторов - Страница 38

References

Оглавление

1 Aboud, K. S., Bailey, S. K., Del Tufo, S. N., Barquero, L. A., & Cutting, L. E. (2019). Fairy tales versus facts: Genre matters to the developing brain. Cerebral Cortex, 29(11), 4877–4888. doi: 10.1093/cercor/bhz025.

2 Adams, M. J. (1998). The three‐cueing system. In J. Osborn & F. Lehr (Eds.), Literacy for all: Issues in teaching and learning (pp. 73–99). New York: Guilford Press.

3 Anderson, R. C., & Pearson, P. D. (1984). A schema‐theoretic view of basic processes in reading comprehension. In P. D. Pearson, R. Barr, M. L. Kamil, & P. Mosenthal (Eds.), Handbook of reading research (pp. 255–291). New York: Longman, Inc.

4 Anderson, R. C., Reynolds, R. E., Schallert, D. L., & Goetz, E. T. (1977). Frameworks for comprehending discourse. American Educational Research Journal, 14(4), 367–381. doi: 10.2307/1162336.

5 Ashby, J., & Clifton, C. (2005). The prosodic property of lexical stress affects eye movements during silent reading. Cognition, 96(3), B89–B100. doi: 10.1016/j.cognition.2004.12.006.

6 Baron, R. W., & Strawson, C. (1976). Use of orthographic and word specific knowledge in reading words aloud. Journal of Experimental Psychology Human Perception and Performance, 2, 386–393.

7 Berent, I., & Perfetti, C. A. (1995). A rose is a REEZ: The two‐cycles model of phonology assembly in reading English. Psychological Review, 102(1), 146–184. doi: 10.1037/0033‐295X.102.1.146.

8 Berlin, R. (1887). Eine besondere art der wortblindheit (dyslexie). Weisbaden: Verlag von J. F. Bergmann.

9 Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). A cross‐cultural effect on the brain revisited: Universal structures plus writing system variation. Journal of Human Brain Mapping, 25(1), 92–104. doi: 10.1002/hbm.20124.

10 Brady, S., & Shankweiler, D. (Eds.) (1991). Phonological processes in literacy: A tribute to Isabelle Y. Liberman. Hillsdale, NJ: Erlbaum.

11 Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11(6), 717–726. doi: 10.1016/S0022‐5371(72)80006‐9.

12 Britt, A., Perfetti, C. A., Garrod, S., & Rayner, K. (1992). Parsing in discourse: Context effects and their limits. Journal of Memory and Language, 31, 293–314. doi: 10.1016/0749‐596X(92)90015‐P.

13 Brouwer, H., Fitz, H., & Hoeks, J. (2012). Getting real about semantic illusions: Rethinking the functional role of the P600 in language comprehension. Brain Research, 1446, 127–143. doi: 10.1016/j.brainres.2012.01.055.

14 Brouwer, H., & Hoeks, J. C. (2013). A time and place for language comprehension: Mapping the N400 and the P600 to a minimal cortical network. Frontiers in Human Neuroscience, 7, 758. doi: 10.3389/fnhum.2013.00758.

15 Cain, K., & Oakhill, J. (Eds.). (2007). Children's comprehension problems in oral and written language: A cognitive perspective. New York: Guilford.

16 Calloway, R. C., & Perfetti, C. A. (2017). Integrative and predictive processes in text reading: The N400 across a sentence boundary. Language, Cognition and Neuroscience, 32(8), 1001–1016. doi: 10.1080/23273798.2017.1279340.

17 Cao, F., Brennan, C., & Booth, J. R. (2015). The brain adapts to orthography with experience: Evidence from English and Chinese. Developmental Science, 18, 785–798. doi: 10.1111/desc.12245.

18 Cao, F., & Perfetti, C. A. (2017). Neural signatures of the reading‐writing connection: Greater involvement of writing in Chinese reading. PlosOne 11(12): e0168414. doi: 10.1371/journal.pone.0168414.

19 Castles, A., & Coltheart, M. (1993). Varieties of developmental dyslexia. Cognition, 47, 149–180. doi: 10.1016/0010‐0277(93)90003‐e.

20 Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition from novice to expert. Psychological Science in the Public Interest, 19(1), 5–51. doi: 10.1177/1529100618772271.

21 Catts, H. W. (2018). The simple view of reading: Advancements and false impressions. Remedial and Special Education, 39(5), 317–323. doi: 10.1177/0741932518767563.

22 Cattell J. M. (1886). The time taken up by cerebral operations. Mind 11, 524–538. doi: 10.1093/mind/os‐XI.42.220.

23 Chang, L.‐Y., Chen, Y.C., & Perfetti, C.A. (2017). GraphCom: A multi‐dimensional measure of grapheme complexity: A comparison of 131 written languages. Behavior Research Methods, 50, 427–449. doi: 10.3758/s13428‐017‐0881‐y.

24 Clifton, C., & Staub, A. (2011). Syntactic influences on eye movements in reading. In: S. Liversedge I. Gilchrist, & S. Everling (Eds.), The Oxford handbook of eye movements. (pp. 895–909). Oxford: Oxford University Press. doi: 10.1093/oxfordhb/9780199539789.013.0049.

25 Cohen, L., Dehaene, S., Naccache, L, Léhericy, S., Dehaene‐Lambertz, G., Hénaff, M.‐A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split‐brain patients. Brain, 123(2), 291–307. doi: 10.1093/brain/123.2.291.

26 Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256. doi: 10.1037/0033‐295x.108.1.204.

27 Cook, A. E., & O'Brien, E. J. (2014). Knowledge activation, integration, and validation during narrative text comprehension. Discourse Processes, 51(1–2), 26–49. doi: 10.1080/0163853X.2013.855107.

28 Dehaene, S. (2009). Reading in the brain: The science of how to read. Penguin: London. doi: 10.1111/ijal.12055.

29 Delogu, F., Brouwer, H., & Crocker, M. W. (2019). Event‐related potentials index lexical retrieval (N400) and integration (P600) during language comprehension. Brain and Cognition, 135, 103569. doi: 10.1016/j.bandc.2019.05.007.

30 Egidi, G., & Caramazza, A. (2013). Cortical systems for local and global integration in discourse comprehension. NeuroImage, 71(1), 59–74. doi: 10.1016/j.neuroimage.2013.01.003.

31 Ehri, L. C. (1992). Reconceptualizing the development of sight word reading and its relationship to recoding. In P. B. Gough, L. C. Ehri, & R. Treiman (Eds.), Reading acquisition (pp. 107–143). Hillsdale NJ: Lawrence Erlbaum.

32 Ehri, L. C. (2005). Development of sight word reading: Phases and findings. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook (pp. 135–154). Oxford: Blackwell Publishing. doi: 10.1002/9780470757642.ch8.

33 Ehri, L. C. (2014). Orthographic mapping in the acquisition of sight word reading, spelling memory and vocabulary learning. Scientific Studies of Reading, 18, 5–21. doi: 10.1080/10888438.2013.819356.

34 Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A Dynamical Model of Saccade Generation during Reading. Psychological Review, 112(4), 777–813. doi: 10.1037/0033‐295X.112.4.777.

35 Facoetti, A., Franceschini, S., & Gori, S. (2019). Role of visual attention in developmental dyslexia. In L. Verhoeven, C. Perfetti, & K. Pugh (Eds.), Developmental dyslexia across languages and writing systems (pp. 307–326). Cambridge University Press. doi: 10.1017/9781108553377.014.

36 Ferreira, F., & Chantavarin, S. (2019). Integration and prediction in language processing: A synthesis of old and new. Current Directions in Psychological Science, 27(6), 443–448. doi: 10.1177/0963721418794491.

37 Ferstl, E. C., Rinck, M., & von Cramon D. Y. (2005). Emotional and temporal aspects of situation model processing during text comprehension: An event‐related fMRI study. Journal of Cognitive Neuroscience, 17(5), 724–739. doi: 10.1162/0898929053747658.

38 Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta‐analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29, 581–593. doi: 10.1002/hbm.20422.

39 Forster, K. I., & Chambers, S. M. (1973). Lexical access and naming time 1: Journal of Verbal Learning and Verbal Behavior, 12(6), 627–635. doi: 10.1016/S0022‐5371(73)80042‐8.

40 Frazier, L., & Rayner, K. (1982). Making and correcting errors during sentence comprehension: Eye movements in the analysis of structurally ambiguous sentences. Cognitive Psychology, 14(2), 178–210. doi: 10.1016/0010‐0285(82)90008‐1.

41 Frost, R. (2012). Towards a universal model of reading. Behavioral and Brain Sciences, 35, 263–279. doi: 10.1017/S0140525X11001841.

42 Gernsbacher, M. A. (1990). Language comprehension as structure building. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

43 Gernsbacher, M. A. (1997). Two decades of structure building. Discourse Processes, 23(3), 265–304. doi: 10.1080/01638539709544994.

44 Gibson E. & Pearlmutter, N. J. (1998). Constraints on sentence comprehension Trends in Cognitive Sciences, 2(7), 262–268. doi: 10.1016/S1364‐6613(98)01187‐5.

45 Gough, P. B. (1972). One second of reading. Visible Language, 6(4), 291–320.

46 Gough, P. B., & Tunmer, W. E. (1986). Decoding, reading, and reading disability. Remedial and Special Education, 7(1), 6–10. doi: 10.1177/074193258600700104.

47 Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101(3), 371–395. doi: 10.1037/0033‐295x.101.3.371.

48 Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition. A multiple read‐out model. Psychological Review, 103(5), 518–565. doi: 10.1037/0033‐295x.103.3.518.

49 Hagoort, P. (2019). The neurobiology of language beyond single‐word processing. Science, 366(6461), 55–58. doi: 10.1126/science.aax0289.

50 Halderman, L. K., Ashby, J., & Perfetti, C. A. (2012). Phonology: An early and integral role in identifying words. In J. Adelman (Ed.), Visual word recognition, Volume I: Models and methods, orthography and phonology (pp. 207–228). Psychology Press.

51 Hanford, E. (2019). At a loss for words: How a flawed idea is teaching millions of kids to be poor readers: https://www.apmreports.org/episode/2019/08/22/whats‐wrong‐how‐schools‐teach‐reading.

52 Hasson, U., Nusbaum, H. C., & Small, S. L. (2007). Brain networks subserving the extraction of sentence information and its encoding to memory. Cerebral Cortex, 17, 2899–2913. doi: 10.1093/cercor/bhm016.

53 Hauk, O. (Ed). (2016). Prediction in language comprehension and production [Special issue]. Language, Cognition and Neuroscience, 31(1).

54 Helder, A., Perfetti, C. A., & van den Broek, P. (2020). Thematic influences on word‐to‐text integration across a sentence boundary. Language, Cognition, and Neuroscience, 35(10), 1239–1256. doi: 10.1080/23273798.2020.1772494.

55 Helder, A., van den Broek, P., Karlsson, J., & van Leijenhorst, L. (2017). Neural correlates of coherence‐break detection during reading of narratives. Scientific Studies of Reading, 21(6), 463–479. doi: 10.1080/10888438.2017.1332065.

56 Hjetland, H. N., Brinchmann, E. I., Scherer, R., Hulme, C., & Melby‐Lervåg, M. (2020). Preschool pathways to reading comprehension: A systematic meta‐analytic review. Educational Research Review, 30, 100323. doi: 10.1016/j.edurev.2020.100323.

57 Ho, C. S.‐H., Chan, D. W.‐O., Tsang, S.‐M., & Lee, S.‐H. (2002). The cognitive profile and multiple‐deficit hypothesis in Chinese developmental dyslexia. Developmental Psychology, 38, 543–553. doi: 10.1037//0012‐1649.38.4.543.

58 Ho, C. S.‐H., Law, T. P.‐S., & Ng, P. M. (2000). The phonological deficit hypothesis in Chinese developmental dyslexia. Reading and Writing, 13, 57–79. doi: 10.1023/A:1008040922662.

59 Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading and Writing, 2(2), 127–160. doi: 10.1007/BF00401799.

60 Huey, E. B. (1908). The psychology and pedagogy of reading. New York: Macmillan.

61 Hulme, C., Nash, H. M., Gooch, D., Lervåg, A. & Snowling, M. (2015). The foundations of literacy development in children at familial risk of dyslexia. Psychological Science, 26(12), 1877–1886. doi: 10.1177/0956797615603702.

62 Hulme, C., & Snowling, M. J. (2011). Children's reading comprehension difficulties: Nature, causes, and treatments. Current Directions in Psychological Science, 20(3), 139–142. doi: 10.1177/0963721411408673.

63 Hulme, C., Snowling, West, G., Lervåg, A, & Melby‐Lervåg, M. (2020). Children’s language skills can be improved: Lessons from psychological science for educational policy. Current Directions in Psychological Science, 29(4), 372–377. doi: 10.1177/0963721420923684.

64 Jamal, N. I., Piche, A. W., Napoliello, E. M., Perfetti, C. A., & Eden, G. F. (2012). Neural basis of single‐word reading in Spanish‐English bilinguals. Human Brain Mapping, 33(1), 235–245. doi: 10.1002/hbm.21208.

65 Jared, D., & Seidenberg, M. S. (1991). Does word identification proceed from spelling to sound to meaning? Journal of Experimental Psychology: General, 120(4), 358–394. doi: 10.1037/0096‐3445.120.4.358.

66 Johnson‐Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.

67 Katz, L., & Frost, R. (1992). The reading process is different for different orthographies: The orthographic depth hypothesis. In R. Frost & L. Katz (Eds.), Advances in psychology, Vol. 94. Orthography, phonology, morphology, and meaning (pp. 67–84). North‐Holland. doi: 10.1016/S0166‐4115(08)62789‐2.

68 Kessler, B. (2003). Is English spelling chaotic? Misconceptions concerning its irregularity. Reading Psychology, 24, 267–289. doi: 10.1080/02702710390227228.

69 Kintsch, W. (1988). The use of knowledge in discourse processing: A construction‐integration model. Psychological Review, 95, 163–182. doi: 10.1037/0033‐295x.95.2.163.

70 Kintsch, W., & Rawson, K. A. (2005). Comprehension. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook (pp. 209–226). Oxford: Wiley‐Blackwell. doi: 10.1002/9780470757642.ch12.

71 Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85(5), 36–394. doi: 10.1037/0033‐295X.85.5.363.

72 Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31(1), 32–59. doi: 10.1080/23273798.2015.1102299.

73 Kuperberg, G. R., Lakshmanan, B. M., Caplan, D. N., & Holcomb, P. J. (2006). Making sense of discourse: An fMRI study of causal inferencing across sentences. Neuroimage, 33(1), 343–361. doi: 10.1016/j.neuroimage.2006.06.001.

74 Kussmaul, A. (1878). Word‐deafness and word‐blindness. In H. v. Ziemssen (Ed.), Cyclopaedia of the practice of medicine. London: Sampson Row, Maston, Searle & Rivingston.

75 Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event‐related brain potential (ERP). Annual Review of Psychology, 62, 621–647. doi: 10.1146/annurev.psych.093008.131123.

76 Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203–205. doi: 10.1126/science.7350657.

77 Li, X., & Pollatsek, A. (2020). An integrated model of word processing and eye‐movement control during Chinese reading. Psychological Review. Advance online publication. https://doi.org/10.1037/rev0000248.

78 Liu, D., Chen, X., & Chung, K. K. H. (2015). Performance in a visual search task uniquely predicts reading abilities in third‐grade Hong Kong Chinese children. Scientific Studies of Reading, 19, 307–324. doi: 10.1080/10888438.2015.1030749.

79 Lonigan, C. J., Burgess, S. R., & Schatschneider, C. (2018). Examining the simple view of reading with elementary school children: Still simple after all these years. Remedial and Special Education, 39(5), 260–273. doi: 10.1177/0741932518764833.

80 Lovegrove, W., Martin, F., & Slaghuis, W.A. (1986). A theoretical and experimental case for a visual deficit in specific reading disability. Cognitive Neuropsychology, 3, 225–267. doi: 10.1080/02643298608252677.

81 Luck, S. J., & Kappenman, E. S. (Eds.). (2011). The Oxford handbook of event‐related potential components. Oxford University Press. doi: 10.1093/oxfordhb/9780195374148.001.0001.

82 Lukatela, G., & Turvey, M. T. (1994a). Visual lexical access is initially phonological: I. Evidence from associative priming by words, homophones, and pseudohomophones. Journal of Experimental Psychology: General, 123(2), 107–128. doi: 10.1037//0096‐3445.123.2.107.

83 Lukatela, G., & Turvey, M. T. (1994b). Visual lexical access is initially phonological: 2. Evidence from phonological priming by homophones and pseudohomophones. Journal of Experimental Psychology, 123(4), 331–353. doi: 10.1037//0096‐3445.123.4.331.

84 Mandler, J. M., & Johnson, N. S. (1977). Remembrance of things parsed: Story structure and recall. Cognitive Psychology, 9(1), 111–151. doi: 10.1016/0010‐0285(77)90006‐8.

85 Manis, F. R., Seidenberg, M. S., Doi, L. M., McBride‐Chang, C., & Petersen, A. (1996). On the bases of two subtypes of developmental dyslexia. Cognition, 58(2), 157–195. doi: 10.1016/0010‐0277(95)00679‐6.

86 McBride‐Chang, C., Chung, K. K.H., & Tong, X. (2011). Copying skills in relation to word reading and writing in Chinese children with and without dyslexia. Journal of Experimental Child Psychology, 110(3), 422–433. doi: 10.1016/j.jecp.2011.04.014.

87 McBride‐Chang, C., Lam, F., Lam, C., Chan, B., Fong, C.Y.‐C., Wong, T. T.‐Y., & Wong, S. W.‐L. (2011). Early predictors of dyslexia in Chinese children: Familial history of dyslexia, language delay, and cognitive profiles. Journal of Experimental Child Psychology, 52(2), 204–211. doi: 10.1111/j.1469‐7610.2010.02299.x.

88 McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Science, 7(7), 293–299. doi: 10.1016/s1364‐6613(03)00134‐7.

89 McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 375–407. doi: 10.1037/0033‐295X.88.5.375.

90 Moore, M. W. Durisko, C. Perfetti, C. A., & Fiez, J. A. (2014). Learning to read an alphabet of human faces produces left‐lateralized training effects in the fusiform gyrus. Journal of Cognitive Neuroscience, 26(4), 896–913. doi: 10.1162/jocn_a_00506.

91 Myers, J. L., & O'Brien, E. J. (1998). Accessing the discourse representation during reading. Discourse Processes, 26(2–3), 131–157. doi: 10.1080/01638539809545042.

92 Nag, S. (2017). Learning to read alphasyllabaries. In K. Cain, D. Compton, & R. Parrila (Eds.), Theories of reading development. Amsterdam: John Benjamins. doi: 10.1075/swll.15.05nag.

93 Nakamura, K., Kuo, W.‐J., Pegado, F., Cohen, F., Tzeng, O.J.L., & Dehaene, S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences, 109(50), 20762–20767. doi: 10.1073/pnas.1217749109.

94 Nation, K. (2005). Children's Reading Comprehension Difficulties. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook (pp. 248–265). Blackwell Publishing. https://doi.org/10.1002/9780470757642.ch14.

95 Nation, K. (2017). Nurturing a lexical legacy: Reading experience is critical for the development of word reading skill. npj Science of Learning, 2(1), 1–4. doi: 10.1038/s41539‐017‐0004‐7.

96 Nation, K. (2019). Children’s reading difficulties, language, and reflections on the simple view of reading. Australian Journal of Learning Difficulties, 24(1), 47–73. doi: 10.1080/19404158.2019.1609272.

97 Nieuwland, M. S. (2019). Do “early” brain responses reveal word form prediction during language comprehension? A critical review. Neuroscience & Biobehavioral Reviews, 96, 367–400. doi: 10.1016/j.neubiorev.2018.11.019.

98 Nieuwland, M. S., Barr, D. J., Bartolozzi, F., Busch‐Moreno, S., Darley, E., Donaldson, D. I., … & Matthew Husband, E. (2020). Dissociable effects of prediction and integration during language comprehension: Evidence from a large‐scale study using brain potentials. Philosophical Transactions of the Royal Society B, 375(1791), 20180522. doi: 10.1098/rstb.2018.0522.

99 Nieuwland, M. S., & van Berkum, J. J. (2006). When peanuts fall in love: N400 evidence for the power of discourse. Journal of Cognitive Neuroscience, 18(7), 1098–1111. doi: 10.1162/jocn.2006.18.7.1098.

100 Noordenbos, M. W., & Serniclaes, W. (2015). The categorical perception deficit in dyslexia: A meta‐analysis. Scientific Studies of Reading, 19(5), 340–359. doi: 10.1080/10888438.2015.1052455.

101 Norris, D. (2013). Models of visual word recognition. Trends in Cognitive Sciences, 17(10), 517–524. doi: 10.1016/j.tics.2013.08.003.

102 Norton, E. S., & Wolf, M. (2011). Rapid automatized naming (RAN) and reading fluency: Implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63, 427–452. doi: 10.1146/annurev‐psych‐120710‐100431.

103 Oakhill, J., & Yuill, N. (1996). Higher order factors in comprehension disability: Processes and remediation. In C. Cornoldi & J. Oakhill (Eds.), Reading comprehension difficulties: Processes and intervention (pp. 69–92). Lawrence Erlbaum Associates Publishers.

104 O’Brien, E. J., Cook, A. E., & Lorch Jr, R. F. (Eds.). (2015). Inferences during reading. Cambridge University Press. doi: 10.1017/CBO9781107279186.

105 Orton, S. T. (1925). “Word‐blindness” in school children. Archives of Neurology and Psychiatry, 14(5), 581–615. doi: 10.1001/archneurpsyc.1925.02200170002001.

106 Paulesu, E., McCrory, E., Fazio, F., Menoncello, L., Brunswick, N., Cappa, S. F., … Frith, U. (2000). A cultural effect on brain function. Nature Neuroscience, 3(1), 91–96. doi: 10.1038/71163.

107 Perfetti, C. A. (1992). The representation problem in reading acquisition. In P. B. Gough, L. C. Ehri, & R. Treiman (Eds.), Reading acquisition (pp. 145–174). Hillsdale, NJ: Lawrence Erlbaum. doi: 10.4324/9781351236904‐6.

108 Perfetti, C.A. (2003). The universal grammar of reading. Scientific Studies of Reading, 7(1), 3–24. doi: 10.1207/S1532799XSSR0701_02.

109 Perfetti, C. A., Bell, L. C., & Delaney, S. M. (1988). Automatic (prelexical) phonetic activation in silent word reading: Evidence from backward masking. Journal of Memory and Language, 27(1), 59–70. doi: 10.1016/0749‐596X(88)90048‐4.

110 Perfetti, C. A., & Harris, L. N. (2013). Universal reading processes are modulated by language and writing system. Language Learning and Development, 9(4), 296–316. doi: 10.1080/15475441.2013.813828.

111 Perfetti, C. A., & Helder, A. (2020). Incremental comprehension examined in event‐related potentials: Word‐to‐text integration and structure building. Discourse Processes, 58(1), 2–21. doi: 10.1080/0163853X.2020.1743806.

112 Perfetti, C. A., & Stafura, J. (2014). Word knowledge in a theory of reading comprehension. Scientific Studies of Reading, 18(1), 22–37. doi: 10.1080/10888438.2013.827687.

113 Perfetti, C. A., & Verhoeven, L. (2017). Epilogue: Universals and particulars in learning to read across seventeen orthographies. In L. Verhoeven & C. A. Perfetti (Eds.), Learning to read across languages and writing systems (pp. 455–480). Cambridge University Press.

114 Perfetti, C. A., Zhang, S., & Berent, I. (1992). Reading in English and Chinese: Evidence for a “universal” phonological principle. In R. Frost & L. Katz (Eds.), Orthography, phonology, morphology, and meaning (pp. 227–248). Amsterdam: North‐Holland. doi: 10.1016/S0166‐4115(08)62798‐3.

115 Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review, 114(2), 273–315. doi: 10.1037/0033‐295X.114.2.273.

116 Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single‐word processing. Nature, 331, 585–589. doi: 10.1038/331585a0.

117 Plaut, D. C., & Gonnerman, L. M. (2000). Are non‐semantic morphological effects incompatible with a distributed connectionist approach to lexical processing? Language and Cognitive Processing, 15, 445–485. doi: 10.1080/01690960050119661.

118 Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi‐regular domains. Psychological Review, 103(1), 56–115. doi: 10.1037/0033‐295x.103.1.56.

119 Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240, 1627–1631. doi: 10.1126/science.3289116.

120 Pringle‐Morgan, W. (1896). A case of congenital word blindness. British Medical Journal, 2, 1378. doi: 10.1136/bmj.2.1871.1378.

121 Pritchard, S. C., Coltheart, M., Marinus, E., & Castles, A. (2016). Modelling the implicit learning of phonological decoding from training on whole‐word spellings and pronunciations. Scientific Studies of Reading, 20(1), 49–63. doi: 10.1080/10888438.2015.1085384.

122 Rack, J. P., Snowling, M. J., & Olson, R. K. (1992). The nonword reading deficit in developmental dyslexia: A review. Reading Research Quarterly, 27(1), 29–53. doi: 10.2307/747832.

123 Ramus. F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212–218. doi: 10.1016/s0959‐4388(03)00035‐7.

124 Rastle, K., & Brysbaert, M. (2006). Masked phonological priming effects in English: Are they real? Do they matter? Cognitive Psychology, 53(2), 97–145. doi: 10.1016/j.cogpsych.2006.01.002.

125 Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of frequency and predictability on eye fixations in reading: Implications for the EZ reader model. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 720–732. doi: 10.1037/0096‐1523.30.4.720.

126 Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M.S. (2001). How psychological science informs the teaching of reading. Psychological Science in the Public Interest, 2(2), 31–74. A supplement to Psychological Science. doi: 10.1111/1529‐1006.00004.

127 Rayner, K., Juhasz, B. J. & Pollatsek, A. (2005). Eye movements during reading. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook (pp. 227–247). Oxford: Blackwell.

128 Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81(2), 275–280. doi: 10.1037/h0027768.

129 Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125–157. doi: 10.1037/0033‐295x.105.1.125.

130 Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E‐Z Reader model of eye‐movement control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26(4), 445–476. doi: 10.1017/s0140525x03000104.

131 Rueckl, J. G., Paz‐Alonso, P. M., Molfese, P. J., Kuo, W.‐J., Bick, A., Frost, S. J., … Frost, R. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings National Academy of Sciences, 112, 15510–15515. doi: 10.1073/pnas.1509321112.

132 Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J., … Kanwisher, N. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9), 1250–1255. doi: 10.1038/nn.4354.

133 Schank, R. C., & Abelson, R. (1977). Scripts, plans, goal, and understanding. Hillsdale, NJ:Lawrence Erlbaum Associates. doi: 10.4324/9780203781036.

134 Seidenberg, M. S. (2011). Reading in different writing systems: One architecture, multiple solutions. In P. McCardle, J. Ren, O. Tzeng, & B. Miller (Eds.), Dyslexia across languages: Orthography and the brain‐gene‐behavior link (pp. 146–168). Baltimore, MD: Brookes.

135 Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96(4), 523–568. doi: 10.1037/0033‐295x.96.4.523.

136 Share, D. L. (1995). Phonological recoding and self‐teaching: Sine qua non of reading acquisition. Cognition, 55(2), 151–218. doi: 10.1016/0010‐0277(94)00645‐2.

137 Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self‐teaching. Journal of Experimental Child Psychology, 87(4), 267–298. doi: 10.1016/j.jecp.2004.01.001.

138 Share, D. L. (2008). On the Anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134(4), 584–615. doi: 10.1037/0033‐2909.134.4.584.

139 Shaywitz, B. A., Shaywitz, S. E. Blachman, B., Pugh, K., Fulbright, R., Skudlarski, P., … Gore, J. C., (2004). Development of left occipito‐temporal systems for skilled reading in children after a phonologically‐based intervention. Biological Psychiatry, 55(9), 926–933. doi: 10.1016/j.biopsych.2003.12.019.

140 Shu, H., McBride‐Chang, C., Wu, S., & Liu, H. (2006). Understanding Chinese developmental dyslexia: Morphological awareness as a core cognitive construct. Journal of Educational Psychology, 98, 122–133. doi: 10.1037/0022‐0663.98.1.122.

141 Simos, P. G., Fletcher, J. M. Sarkari, S., Billingsley, R. L, Denton, C., & Papanicolaou, A. C. (2007). Altering the brain circuits for reading through intervention: A magnetic source imaging study. Neuropsychology, 21(4), 485–496. doi: 10.1037/0894‐4105.21.4.485.

142 Singer, M., Halldorson, M., Lear, J. C., & Andrusiak, P. (1992). Validation of causal bridging inferences in discourse understanding. Journal of Memory and Language, 31(4), 507–524. doi: 10.1016/0749‐596X(92)90026‐T.

143 Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading constrained by culture: Evidence from Chinese. Nature, 431, 71–76. doi: 10.1038/nature02865.

144 Snell, J., van Leipsig, S., Grainger, J., & Meeter, M. (2018). OB1‐reader: A model of word recognition and eye movements in text reading. Psychological Review, 125(6), 969–984. doi: 10.1037/rev0000119.

145 Snowling, M. J., Gallagher, A., Frith, U. (2003). Family risk of dyslexia is continuous: Individual differences in the precursors of reading skill. Child Development, 74, 358–373. doi: 10.1111/1467‐8624.7402003.

146 Snowling, M. J., Lervåg, A., Nash, H. M., & Hulme, C. (2019). Longitudinal relationships between speech perception, phonological skills and reading in children at high‐risk of dyslexia. Developmental science, 22(1), e12723. doi: 10.1111/desc.12723.

147 Snowling, M. J., Stackhouse, J., & Rack, J. P. (1986). Phonological dyslexia and dysgraphia: A developmental analysis. Cognitive Neuropsychology, 3, 309–339. doi: 10.1080/02643298608253362.

148 Stafura, J. Z., & Perfetti, C. A. (2014). Word‐to‐text integration: Message level and lexical level influences in ERPs. Neuropsychologia, 64, 41–53. doi: 10.1016/j.neuropsychologia.2014.09.012.

149 Stein, N., & Glenn, C. G. (1979). An analysis of story comprehension in elementary school children. In R. Freedle (Ed.), Discourse processing: Multidisciplinary perspectives (pp. 53–120). Norwood, NJ: Ablex.

150 Strong, G. K., Torgerson, C. J., Torgerson, D., & Hulme, C. (2011). A systematic meta‐analytic review of evidence for the effectiveness of the “Fast ForWord” language intervention program. Journal of Child Psychology and Psychiatry, 52(3), 224–235. doi: 10.1111/j.1469‐7610.2010.02329.x.

151 Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198. doi: 10.1016/0093‐934x(80)90139‐x.

152 Tan, L.H., Spinks, J.A., Eden, G., Perfetti, C.A., & Siok, W.T. (2005). Reading depends on writing, in Chinese. PNAS, 102, 8781–8785. doi: 10.1073/pnas.0503523102.

153 Taylor, J. S. H., Rastle, K., & Davis, M. H. (2013). Can cognitive models explain brain activation during word and pseudoword reading? A meta‐analysis of 36 neuroimaging studies. Psychological Bulletin, 139(4), 766–791. doi: 10.1037/a0030266.

154 Trabasso, T, Secco, T., & van den Broek. P. W. (1984). Causal cohesion and story coherence. In H. Mandl, N. L. Stein, & T. Trabasso (Eds.), Learning and comprehension of text (pp. 83–111). Hillsdale, NJ; Erlbaum.

155 Trabasso, T., & Suh, S. (1993). Understanding text: Achieving explanatory coherence through on‐line references and mental operations in working memory. Discourse Processes, 16(1–2), 3–34. doi: 10.1080/01638539309544827.

156 Turkeltaub, P., Gareau, L., Flowers, D., Zeffiro, T., & Eden, G. (2003). Development of neural mechanisms of reading. Nature Neuroscience, 6, 767–773. doi: 10.1038/nn1065.

157 van den Broek, P., & Helder, A. (2017). Cognitive processes in discourse comprehension: Passive processes, reader‐initiated processes, and evolving mental representations. Discourse Processes, 54(5–6), 360–372. doi: 10.1080/0163853X.2017.1306677.

158 van den Broek, P., Rapp, D. N., & Kendeou, P. (2005). Integrating memory‐based and constructionist approaches in accounts of reading comprehension. Discourse Processes, 39, 299–316. doi: 10.1207/s15326950dp3902&3_11.

159 van den Broek, P., Risden, K., & Husebye‐Hartmann, E. (1995). The role of readers’ standards for coherence in the generation of inferences during reading. In R. F. Lorch Jr., & E. J. O’Brien (Eds.), Sources of coherence in reading (pp. 353–373). Hillsdale, NJ: Lawrence Erlbaum.

160 van den Broek, P., Young, M., Tzeng, Y., & Linderholm, T. (1999). The landscape model of reading. In H. van Oostendorp & S. R. Goldman (Eds.), The construction of mental representations during reading (pp. 71–98). Mahwah, NJ: Erlbaum.

161 van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. Academic Press.

162 van Orden, G. C. (1987). A ROWS is a ROSE: Spelling, sound, and reading. Memory & Cognition, 15, 181–198. doi: 10.3758/bf03197716.

163 van Orden, G. C., Pennington, B. F., & Stone, G. O. (1990). Word identification in reading and the promise of subsymbolic psycholinguistics. Psychological Review, 97(4), 488–522. doi: 10.1037/0033‐295x.97.4.488.

164 Vellutino, F. R. (1981). Dyslexia: Theory and research. Cambridge, MA: MIT Press.

165 Verhoeven, L., & Perfetti, C. A. (Eds.). (2017a). Learning to read across languages and writing systems. Cambridge University Press.

166 Verhoeven, L., & Perfetti, C. A. (2017b). Operating principles in learning to read. In L. Verhoeven & C. A. Perfetti (Eds.), Learning to read across languages and writing systems (pp. 1–30). Cambridge University Press.

167 Verhoeven, L., Perfetti, C. A., & Pugh, K. (2019). Cross‐linguistic perspectives on second language reading. Journal of Neurolinguistics, 50, 1–6. doi: 10.1016/j.jneuroling.2019.02.001.

168 Virtue, S., Haberman, J., Clancy, Z., Parrish, T., & Beeman, M. J. (2006). Neural activity of inferences during story comprehension. Brain Research, 1084(1), 104–114. doi: 10.1016/j.brainres.2006.02.053.

169 Warren, T., & Dickey, M.W. (2021). The use of linguistic and world knowledge in language processing. Language and Linguistics Compass. doi: 10.1111/lnc3.12411.

170 Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology, 1, 59–85. doi: 10.1016/0010‐0285(70)90005‐8.

171 Wolf, M., & Bowers, P. G. (1999). The double‐deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91, 415–438. doi: 10.1037/0022‐0663.91.3.415.

172 Wydell, T. N. (2019). Developmental dyslexia in Japanese. In L. Verhoeven, C. Perfetti, and K. Pugh (Eds.), Developmental dyslexia across languages and writing systems (pp 176–199). Cambridge: Cambridge University Press. doi: 10.1017/9781108553377.009.

173 Xu, M. Tan, L. H., & Perfetti, C. P. (2019). Developmental dyslexia in Chinese. In L. Verhoeven, C. Perfetti, and K. Pugh (Eds.), Developmental dyslexia across languages and writing systems (pp. 200–226). Cambridge: Cambridge University Press. doi: 10.1017/9781108553377.010.

174 Xu, J., Kemeny, S., Park, G., Frattali, C., & Braun, A. (2005). Language in context: Emergent features of word, sentence, and narrative comprehension. Neuroimage, 25(3), 1002–1015. doi: 10.1016/j.neuroimage.2004.12.013.

175 Yang, J. F., McCandliss, B. D., Shu, H., & Zevin, J. D. (2009). Simulating language‐specific and language‐general effects in a statistical learning model of Chinese reading. Journal of Memory & Language, 61, 238–257. doi: 10.1016/j.jml.2009.05.001.

176 Yarkoni, T., Speer, N. K., & Zacks, J. M. (2008). Neural substrates of narrative comprehension and memory. NeuroImage, 41(4), 1408–1425. doi: 10.1016/j.neuroimage.2008.03.062.

177 Zevin, J. (2019). Modeling developmental dyslexia across languages and writing systems. In L. Verhoeven, C. Perfetti, & K. Pugh (Eds.), Developmental dyslexia across languages and writing systems (pp. 372–390). Cambridge: Cambridge University Press. doi: 10.1017/9781108553377.017.

178 Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131, 3–29. doi: 10.1037/0033‐2909.131.1.3.

179 Ziegler, J. C., Perry, C., & Zorzi, M. (2019). Modeling the variability of developmental dyslexia. In L. Verhoeven, C. Perfetti, and K. Pugh (Eds.), Developmental dyslexia across languages and writing systems (pp. 350–371). Cambridge: Cambridge University Press. doi: 10.1017/9781108553377.016.

180 Zwaan, R. A., Langston, M. C., & Graesser, A. C. (1995). The construction of situation models in narrative comprehension: An event‐indexing model. Psychological Science, 6(5), 292–297. doi: 10.1111/j.1467‐9280.1995.tb00513.x.

The Science of Reading

Подняться наверх