Читать книгу Catalytic Asymmetric Synthesis - Группа авторов - Страница 71
REFERENCES
Оглавление1 1. Yamamoto, H.; Ishihara, K. eds Acid Catalysis in Modern Organic Synthesis, Vol. 1, and 2, Weinheim, Germany: Wiley‐VCH. 2008.
2 2. (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289–296. (b) Pihko, P. M. Angew. Chem. Int. Ed. 2004, 43, 2062–2064.
3 3. (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901–4902. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279–1281.
4 4. (a) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964–12965. (b) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672–12673. (c) Inokuma, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2006, 128, 9413–9419; (d) For reviews, see: Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299–4306. (e) Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520–1543. (f) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743. (g) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187–1198. (h) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. USA 2010, 107, 20678–20685. (i) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593–601.
5 5. Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146.
6 6. McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094–12095.
7 7. (a) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418–3419. (b) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466–3467. (c) For a recent example, see: Yousefi, R.; Struble, T. J.; Payne, J. L.; Vishe, M.; Schley, N. D.; Johnston, J. N. J. Am. Chem. Soc. 2019, 141, 618–625.
8 8. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566–1568.
9 9. Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356–5357.
10 10. (a) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054–10055. (b) Hashimoto, T.; Maruoka, K. Synthesis 2008, 3703–3706.
11 11. (a) Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858–16860. (b) For reviews, see: Hatano, M.; Ishihara, K. Asian J. Org. Chem. 2014, 3, 352–365. (c) Hatano, M.; Zhao, X.; Mochizuki, T.; Maeda, K.; Motokura, K.; Ishihara, K. Asian J. Org. Chem. 2021, 10, 360–365
12 12. (a) García‐García, P.; Lay, F.; García‐García, P.; Rabalakos, C.; List, B. Angew. Chem. Int. Ed. 2009, 48, 4363–4366. (b) Ratjen, L.; García‐García, P.; Lay, F.; Beck, M. E.; List, B. Angew. Chem. Int. Ed. 2011, 50, 754–758. (c) For a review, see: James, T.; van Gemmeren, M.; List, B. Chem. Rev. 2016, 115, 9388–9409.
13 13. Čorić, I.; List, B. Nature 2012, 483, 315–319.
14 14. DSI, IDP, and IDPi are mainly used as precatalyst to generate silylium cation as well as chiral Brønsted acid. For a review on imidodiphosphorimidate (IDPi) catalysis, see: Schreyer, L.; Properzi, R.; List, B. Angew. Chem. Int. Ed. 2019, 58, 12761–12777.
15 15. (a) For reviews on chiral Brønsted acid catalysis, Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999–1010. (b) Akiyama, T. Chem. Rev. 2007, 107, 5744–5758. (c) Terada, M. Synthesis 2010, 1929–1982. (d) Terada, M. Bull. Chem. Soc. Jpn. 2010, 83, 101–119. (e) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047–9153. (f) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277–9306. (g) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2017, 117, 10608–10620. (h) Maji, R.; Mallojjalaa, S. C.; Wheeler, S. E. Chem. Soc. Rev. 2018, 47, 1142–1158. (i) Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.; Masson, G. Chem. Eur. J. 2018, 24, 3925–2943. (j) Li, X.; Song, Q. Chin. Chem. Lett. 2018, 29, 1181–1192. (k) Xia, Z.‐L.; Xu‐Xu, Q.‐F.; Zheng, C.; You, S.‐L. Chem. Soc. Rev. 2020, 49, 286–300.
16 16. (a) Maruoka, K. ed. Asymmetric Organocatalysis 2, Brønsted base and acid catalysts, and additional topics. In: Science of Synthesis, Stuttgart, Germany, Georg Thieme Verlag KG, 2012. (b).Rueping, M., Parmar, D., and Sugiono, E. eds Asymmetric Brønsted Acid Catalysis, Weinheim, Germany: Wiley‐VCH. 2016.
17 17. (a) Yang, C.; Xue, X.‐S.; Jin, J.‐L.; Li, X.; Cheng, J.‐P. J. Org. Chem. 2013, 48, 7076–7085. (b) Yang, C.; Xue, X.‐S.; Li, X.; Cheng, J.‐P. J. Org. Chem. 2014, 79, 4340–4351.
18 18. Guo, Q.‐X.; Liu, H.; Guo, C.; Luo, S.‐W.; Gu, Y.; Gong, L.‐Z. J. Am. Chem. Soc. 2007, 129, 3790–3791.
19 19. For a review on SPINOL derived chiral phosphoric acid, see: Rahman, A.; Lin, X. Org. Biomol. Chem. 2018, 16, 4753–4777.
20 20. Coric, I.; Müller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370–17373.
21 21. Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626–9627.
22 22. (a) Christ, P.; Lindsay, A. G.; Vormittag, S. S.; Neudörfl, J.‐M.; Berkessel, A.; O'Donoghue, A. C. Chem. Eur. J. 2011, 17, 8524–8528. (b) Kaupmees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.; Leito, I. Angew. Chem. Int. Ed. 2013, 52, 11569–11572.
23 23. For a review on ACDC, see: Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518–533.
24 24. (a) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nature Chem. 2012, 4, 603–614. (b) See also, Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534–561.
25 25. Toste, D. (this issue), Chapter 4 – Asymmetric phase transfer and ion pair organocatalysis. In: Akiyama, T. and Ojima, I. Catalytic Asymmetric Synthesis, 4e, Wiley.
26 26. Parra, A.; Reboredo, S.; Castro, A. M. M.; Alemán, J. Org. Biomol. Chem. 2012, 10, 5001–5020
27 27. (a) For reviews, see: Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2010 2999–3025. (b) Piovesana, S.; Scarpino Schietroma, D. M.; Bella, M. Angew. Chem. Int. Ed. 2011, 50, 6216–6232. (c) Brière, J.‐F.; Oudeyer, S.; Dalla, V.; Levacher, V. Chem. Soc. Rev. 2012, 41, 1696–1707. (d) Tran, V. T.; Nimmagadda, S. K.; Liu, M.; Engle, K. M. Org. Biomol. Chem. 2020, 18, 618–637.
28 28. (a) Inanaga, J.; Sugimoto, Y.; Hanamoto, T. New J. Chem. 1995, 19, 707–712. (b) Furuno, H.; Hanamoto, T.; Sugimoto, Y.; Inanaga, J. Org. Lett. 2000, 2, 49–52.
29 29. Hatano, M.; Ikeno, T.; Matsumura, T.; Torii, S.; Ishihara, K. Adv. Synth. Catal. 2008, 350, 1776–1780.
30 30. Drouet, F.; Lalli, C.; Liu, H.; Masson, G.; Zhu, J. Org. Lett. 2010, 13, 94–97.
31 31. Ingle, G. K.; Liang, Y.; Mormino, M. G.; Li, G.; Fronczek, F. R.; Antilla, J. C. Org. Lett. 2011, 13, 2054–2057.
32 32. (a) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 3823–3826. (b) Hatanoa, M.; Ishihara, K. Synthesis 2010, 3785–3801
33 33. Klussmann, M.; Ratjen, L.; Hoffmann, S.; Wakchaure, V.; Goddard, R.; List, B. Synlett 2010, 2189–2192.
34 34. For an example, see: Prashad, M.; Hu, B.; Repi, O.; Blacklock, T. J.; Giannousis, P. Org. Process Res. Dev. 2000, 4, 55–59.
35 35. Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756–6764.
36 36. Zhou, F.; Yamamoto, H. Angew. Chem. Int. Ed. 2016, 55, 8970–8974
37 37. Gheewala, C. D.; Collins, B. E.; Lambert, T. H. Science 2016, 351, 961–965
38 38. Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858–16860.
39 39. Zhu, C.; Mandrelli, F.; Zhou, H.; Maji, R.; List, B. J. Am. Chem. Soc. 2021, 143, 3312–3317.
40 40. Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086–1087.
41 41. Wang, S.‐G.; Xia, Z.‐L.; Xu, R.‐Q.; Liu, X.‐J.; Zheng, C.; You, S.‐L. Angew. Chem. Int. Ed. 2017, 56, 7440–7443.
42 42. (a) Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631. (b) See also: Reid, J. P.; Sigman, M. S. Nature 2019, 571, 343–348.
43 43. Wang, Y.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2017, 56, 5612–5615.
44 44. Fan, L.; Han, C.; Li, X.; Yao, J.; Wang, Z.; Yao, C.; Chen, W.; Wang, T.; Zhao, J. Angew. Chem. Int. Ed. 2018, 57, 2115–2119.
45 45. Kang, Q.; Zhao, Z.‐A.; You, S.‐L. J. Am. Chem. Soc. 2007, 129, 1484–1485.
46 46. Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. J. Org. Chem. 2010, 75, 8677–8680.
47 47. (a) For reviews, see: Zeng, M.; You, S.‐L. Synlett 2010, 1289–1301. (b) Terrasson, V.; Marcia de Figueiredo, R.; Campagne, J. M. Eur. J. Org. Chem 2010, 2635–2655.
48 48. Hatano, M.; Mochizuki, T.; Nishikawa, K.; Ishihara, K. ACS Catal. 2018, 8, 349–353.
49 49. Hatano, M.; Okamoto, H.; Kawakami, T.; Toh, K.; Nakatsuji, H.; Sakakura, A.; Ishihara, K. Chem. Sci. 2018, 9, 6361–6367.
50 50. For a review on combined acid catalysis for asymmetric synthesis, see: Yamamoto, H.; Futatsugi, K. Angew. Chem. Int. Ed. 2005, 44, 1924–1942.
51 51. Miyagawa, M.; Yoshida, M.; Kiyota, Y.; Akiyama, T. Chem. Eur. J. 2019, 25, 5677–5681.
52 52. For a review on organocatalytic enantioselective Friedel‐Crafts alkylation reactions of pyrroles, see: Gaviña, D.; Escolano, M.; Torres, J.; Alzuet‐Piña, G.; Sánchez‐Roselló, M.; del Pozo, C. Adv. Synth. Catal. 2021, 363, 3439–3470.
53 53. Uchikura, T.; Suzuki, R.; Suda, Y.; Akiyama, T. ChemCatChem 2020, 12, 4784–4787.
54 54. Yonesaki, R.; Kondo, Y.; Akkad, W.; Sawa, M.; Morisaki, K.; Morimoto, H.; Ohshima, T. Chem. Eur. J. 2018, 24, 15211–15214.
55 55. (a) Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166–6169. (b) See also, Mori, K.; Isogai, R.; Kamei, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2018, 140, 6203–6207.
56 56. Lee, S.; Kim, S. Tetrahedron 2009, 50, 3345–3348.
57 57. Prévost, S.; Dupré, N.; Leutzsch, M.; Wang, Q.; Wakchaure, V.; List, B. Angew. Chem. Int. Ed. 2014, 53, 8770–8773.
58 58. Liu, L.; Kaib, P. S. J.; Tap, A.; List, B. J. Am. Chem. Soc. 2016, 138, 10822–10825.
59 59. Liu, L.; Leutzsch, M.; Zheng, Y.; Alachraf, M. W.; Thiel, W.; List, B. J. Am. Chem. Soc. 2015, 137, 13268–13271.
60 60. Rueping, M.; Theissmann, T.; Kuenkel, A.; Koenigs, R. M. Angew. Chem. Int. Ed. 2008, 47, 6798–6801.
61 61. Kikuchi, J.; Aramaki, H.; Okamoto, H.; Terada, M. Chem. Sci. 2019, 10, 1426–1433.
62 62. Jain, P.; Antilla, J. C. J. Am. Chem. Soc. 2010, 132, 11884–11886.
63 63. Jain, P.; Wang, H.; Houk, K. N.; Antilla, J. C. Angew. Chem. Int. Ed. 2012, 51, 1391–1394.
64 64. Grayson, M. N.; Pellegrinet, S. C.; Goodman, J. M. J. Am. Chem. Soc. 2012, 134, 2716–2722.
65 65. Wang, H.; Jain, P.; Antilla, J. C.; Houk, K. N. J. Org. Chem. 2013, 78, 1208–1215.
66 66. Barrio, P.; Rodríguez, E.; Saito, K.; Fustero, S.; Akiyama, T. Chem. Commun. 2015, 51, 5246–5249.
67 67. Gao, S.; Duan, M.; Houk, K.; Chen, M. Angew. Chem. Int. Ed. 2020, 59, 10540–10548.
68 68. (a) Wang, M.; Khan, S.; Miliordos, E.; Chen, M. Adv. Synth. Catal. 2019, 360, 4634–4639. (b) Liu, J.; Chen, M. Org. Lett. 2020, 22, 8967–8972.
69 69. Miura, T.; Nakahashi, J.; Murakami, M. Angew. Chem. Int. Ed. 2017, 56, 6989–6993.
70 70. Miura, T.; Nakahashi, J.; Zhou, W.; Shiratori, Y.; Stewart, S. G.; Murakami, M. J. Am. Chem. Soc. 2017, 139, 10903–10908.
71 71. Mahlau, M.; García‐García, P.; List, B. Chem. Eur. J. 2012, 18, 16283–16287.
72 72. Kaib, P. S. J.; Schreyer, L.; Lee, S.; Properzi, R.; List, B. Angew. Chem. Int. Ed. 2016, 55, 13200–13203.
73 73. Bae, H. Y.; Höfler, D.; Kaib, P. S. J.; Kasaplar, P.; De, C. K.; Döhring, A.; Lee, S.; Kaupmees, K.; Leito, I.; List, B. Nat. Chem. 2018, 10, 888–894.
74 74. Lee, D. S.; Bae, H. Y.; List, B. Angew. Chem. Int. Ed. 2018, 57, 12162–12166.
75 75. Min, D. C.; Lin, Y.; Seidel, D. Angew. Chem. Int. Ed. 2017, 56, 15353–15357.
76 76. Rajkumar, S.; Tang, M.; Yang, X. Angew. Chem. Int. Ed. 2020, 59, 2333–2337
77 77. Das, S.; Liu, L.; Zheng, Y.; Alachraf, M. W.; Thiel, W.; De, C. K.; List, B. J. Am. Chem. Soc. 2016, 138, 9429–9432.
78 78. Maskeri, M. A.; O'Connor, M. J.; Jaworski, A. A.; Davies, A. V.; Scheidt, K. A. Angew. Chem. Int. Ed. 2018, 57, 17225–17229.
79 79. Zhao, C.; Chen, S. B.; Seidel, D. J. Am. Chem. Soc. 2016, 138, 9053–9056.
80 80. Zhu, Z.; Odagi, M.; Zhao, C.; Abboud, K. A.; Kirm, H. U.; Saame, J.; Lõkov, M.; Leito, I.; Seidel, D. Angew. Chem. Int. Ed. 2020, 59, 2028–2032.
81 81. For a review on enantioselective cycloaddition reaction catalyzed by chiral phosphoric acids, see: Held, F. E.; Grau, D.; Tsogoeva, S. B. Molecules 2015, 20, 16103–16126.
82 82. Gatzenmeier, T.; van Gemmeren, M.; Xie, Y.; Höfler, D.; Leutzsch, M.; List, B. Science 2016, 351, 949–952.
83 83. Gatzenmeier, T.; Turberg, M.; Yepes, D.; Xie, Y.; Neese, F.; Bistoni, G.; List, B. J. Am. Chem. Soc. 2018, 140, 12671–12676.
84 84. Kim, H.; Gerosa, G.; Aronow, J.; Kasaplar, P.; Ouyang, J.; Lingnau, J. B.; Guerry, P.; Farès, C.; List, B. Nat. Commun. 2019, 10 770.
85 85. Ghosh, S.; Das, S.; De, C. K.; Yepes, D.; Neese, F.; Bistoni, G.; Leutzsch, M.; List, B. Angew. Chem. Int. Ed. 2020, 59, 12347–12351.
86 86. Varlet, T.; Gelis, C.; Retailleau, P.; Bernadat, G.; Neuville, L.; Masson, G. Angew. Chem. Int. Ed. 2020, 59, 8491–8496.
87 87. Hatano, M.; Goto, Y.; Izumiseki, A.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2015, 137, 13472–13475.
88 88. Akiyama, T.; Morita, H.; Fuchibe, K. J. Am Chem. Soc. 2006, 128, 13070–13071.
89 89. (a) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. 2009, 131, 4598–4599. (b) Dagousset, G.; Zhu, J.; Masson, G. J. Am. Chem. Soc. 2011, 133, 14804–14813.
90 90. For a review, see: Varleta, T.; Masson, G. Chem. Commun. 2021, 57, 4089–4105.
91 91. Jarrige, L.; Blanchard, F.; Masson, G. Angew. Chem. Int. Ed. 2017, 56, 10573–10576.
92 92. (a) Luo, C.; Huang, Y. J. Am. Chem. Soc. 2013, 135, 8193–8196. (b) See also: Dai, W.; Jiang, X.‐L.; Tao, J.‐Y.; Shi, F. J. Org. Chem. 2016, 81, 185–192.
93 93. Momiyama, N.; Tabuse, H.; Noda, H.; Yamanaka, M.; Fujinami, T.; Yamanishi, K.; Izumiseki, A.; Funayama, K.; Egawa, F.; Okada, S.; Adachi, H.; Terada, M. J. Am. Chem. Soc. 2016, 138, 11353–11359.
94 94. Kretzschmar, M.; Hodík, T.; Schneider, C. Angew. Chem. Int. Ed. 2016, 55, 9788–9792.
95 95. Hatano, M.; Nishikawa, K.; Ishihara, K. J. Am. Chem. Soc. 2017, 139, 8424–8427.
96 96. Nakanishi, T.; Kikuchi, J.; Kaga, A.; Chiba, S.; Terada, M. Chem. Eur. J. 2020, 26, 8230–8234.
97 97. Zhao, J.‐J.; Sun, S.‐B.; He, S.‐H.; Wu, Q.; Shi, F. Angew. Chem. Int. Ed. 2015, 54, 5460–5464.
98 98. El‐Sepelgy, M. S. O.; Haseloff, M. S. S.; Alamsetti, S. K.; Schneider, C. Angew. Chem. Int. Ed. 2014, 53, 7923–7927.
99 99. Alamsetti, S. K.; Spanka, M.; Schneider, C. Angew. Chem. Int. Ed. 2016, 55, 2392–2396.
100 100. Wang, Y.‐M.; Zhang, H.‐H.; Li, C.; Fan, T.; Shi, F. Chem. Commun. 2016, 52, 1804–1807.
101 101. Tan, W.; Li, X.; Gong, Y.‐X.; Ge, M.‐D.; Shi, F. Chem. Commun. 2014, 50, 15901–15904.
102 102. For a review on enantioselective reactions of indolylmethanol catalyzed by chiral phosphoric acid, see: Mei, G.‐J.; Shi, F. J. Org. Chem 2017, 82, 7695–7707.
103 103. For a review on enantioselective reactions of indole‐based chiral heterocycles catalyzed by chiral phosphoric acid, see: Zhang, Y.‐C.; Jiang, F.; Shi, F. Acc. Chem. Res. 2020, 53, 425–446.
104 104. Gelis, C.; Levitr, G.; Merad, J.; Retailleau, P.; Neuville, L.; Masson, G. Angew. Chem. Int. Ed. 2018, 57, 12121–12125.
105 105. Bera, K.; Schneider, C. Chem. Eur. J. 2016, 22, 7074–7078.
106 106. Zhu, Z. Q.; Shen, Y.; Sun, X. X.; Tao, J. Y.; Liu, J. X.; Shi, F. Adv. Synth. Catal. 2016, 358, 3797–3808.
107 107. Sun, X. X.; Zhang, H. H.; Li, G. H.; He, Y. Y.; Shi, F. Chem. Eur. J. 2016, 22, 17526–17532.
108 108. Suneja, A.; Loui, H. J.; Schneider, C. Angew. Chem. Int. Ed. 2020, 59, 5536–5540.
109 109. Villar, L.; Uria, U.; Martínez, J. I.; Prieto, L.; Reyes, E.; Carrillo, L.; Vicario, J. L. Angew. Chem. Int. Ed. 2017, 56, 10535–10538.
110 110. Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. Angew. Chem. Int. Ed. 2007, 46, 2097–2100.
111 111. Jolit, A.; Walleser, P. M.; Yap, G. P. A.; Tius, M. A. Angew. Chem. Int. Ed. 2014, 53, 6180–6183.
112 112. Ouyang, J.; Kennemur, J. L.; De, C. K.; Farès, C.; List, B. J. Am. Chem. Soc. 2019, 141, 3414–3418.
113 113. Jin, J.; Zhao, Y.; Gouranourimi, A.; Ariafard, A.; Chan, P. W. H. J. Am. Chem. Soc. 2018, 140, 5834–5841.
114 114. Yang, B.‐M.; Cai, P.‐J.; Tu, Y.‐Q.; Yu, Z.‐X.; Chen, Z.‐M.; Wang, S.‐H.; Wang, S.‐H.; Zhang, F.‐M. J. Am. Chem. Soc. 2015, 137, 8344–8347.
115 115. Felker, I.; Pupo, G.; Kraft, P.; List, B. Angew. Chem. Int. Ed. 2015, 54, 1960–1964.
116 116. Wang, Y.‐Y.; Kanomata, K.; Korenaga, T.; Terada, M. Angew. Chem. Int. Ed. 2016, 55, 927–931.
117 117. Uraguchi, D.; Kinoshita, N.; Nakashima, D.; Ooi, T. Chem. Sci. 2012, 3, 3161–3164.
118 118. Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2008, 47, 4016–4018.
119 119. Mori, K.; Wakazawa, M.; Akiyama, T. Chem. Sci. 2014, 5, 1799–1803.
120 120. Ibáñez, I.; Kaneko, M.; Kamei, Y.; Tsutsumi, R.; Yamanaka, M.; Akiyama, T. ACS Catal. 2019, 9, 6903–6909.
121 121. Sheng, Y.‐F.; Gu, Q.; Zhang, A.‐J.; You, S.‐L. J. Org. Chem 2009, 74, 6899–6901.
122 122. Sheng, Y.‐F.; Li, G.‐Q.; Kang, Q.; Zhang, A.‐J.; You, S.‐L. Chem. Eur. J. 2009, 15, 3351–3354.
123 123. Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781–3783.
124 124. Yang, J. W.; Fonseca, M. T. H.; Vignola, N.; List, B. Angew. Chem. Int. Ed. 2005, 44, 108–110.
125 125. Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84–86.
126 126. (a) Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 5830–5831. (b) Kang, Q.; Zhao, Z.‐A.; You, S.‐L. Adv. Synth. Catal. 2007, 349, 1657–1660. (c) For corrigendum, Kang, Q.; Zhao, Z.‐A.; You, S.‐L. Adv. Synth. Catal. 2007, 349, 2075.
127 127. Rueping, M.; Antonchick, A. P. Angew. Chem. Int. Ed. 2007, 46, 4562–4565.
128 128. (a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 3683–3686. (b) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 1001–1006.
129 129. Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 6751–6755.
130 130. Rueping, M.; Tato, F.; Schoepke, F. R. Chem. Eur. J. 2010, 16, 2688–2691.
131 131. Rueping, M.; Brinkmann, C.; Antonchick, A. P.; Atodiresei, I. Org. Lett. 2010, 12, 4604–4607.
132 132. Han, Z.‐Y.; Xiao, H.; Gong, L.‐Z. Bioorg. Med. Chem. Lett. 2009, 19, 3729–3732.
133 133. (a) For reviews on transefr hydrogenation using CPA and Hantzsch ester, see: Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852–865. (b) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13, 1084–1105. (c) Zheng, C.; You, S.‐L. Chem. Soc. Rev. 2012, 41, 2498–2518. (d) Phillips, A. M. F.; Pombeiro, A. J. L. Org. Biomol. Chem 2017, 15, 2307–2340.
134 134. Simón, L.; Goodman, J. M. J. Am. Chem. Soc. 2008, 130, 8741–8747.
135 135. Marcelli, T.; Hammar, P.; Himo, F. Adv. Synth. Catal. 2009, 351, 525–529.
136 136. Chen, Q.‐A.; Gao, K.; Duan, Y.; Ye, Z.‐S.; Shi, L.; Yang, Y.; Zhou, Y.‐G. J. Am. Chem. Soc. 2012, 134, 2442–2448.
137 137. (a) Li, C.; Villa‐Marcos, B.; Xiao, J. J. Am. Chem. Soc. 2009, 131, 6967–6969. (b) Tang, W.; Johnston, S.; Iggo, J. A.; Berry, N. G.; Phelan, M.; Lian, L.; Bacsa, J.; Xiao, J. Angew. Chem. Int. Ed. 2013, 52, 1668–1672.
138 138. Wakchaure, V. N.; Kaib, P. S. J.; Leutzsch, M.; Lis, B. Angew. Chem. Int. Ed. 2015, 54, 11852–11856.
139 139. Wakchaure, V. N.; List, B. Angew. Chem. Int. Ed. 2016, 55, 15775–15778.
140 140. Wakchaure, V. N.; Obradors, C.; List, B. Synlett 2020, 31, 1707–1712.
141 141. Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem. Res. 2015, 48, 388–398.
142 142. Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180–4183.
143 143. Saito, K.; Horiguchi, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. Chem. Eur. J. 2014, 20, 7616–7620.
144 144. Zhu, C.; Akiyama, T. Adv. Synth. Catal. 2010, 352, 1846–1850
145 145. Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem. Int. Ed. 2011, 50, 8180–8183.
146 146. Sakamoto, T.; Horiguchi, K.; Saito, K.; Mori, K.; Akiyama, T. Asian J. Org. Chem. 2013, 2, 943–946.
147 147. Miyagawa, M.; Takashima, K.; Akiyama, T. Synlett 2018, 29, 1607–1610.
148 148. Horiguchi, K.; Yamamoto, E.; Saito, K.; Yamanaka, M.; Akiyama, T. Chem. Eur. J. 2016, 22, 8078–8083.
149 149. Saito, K.; Akiyama, T. Chem. Commun. 2012, 48, 4573–4575.
150 150. Sakamoto, T.; Mori, K.; Akiyama, T. Org. Lett. 2012, 14, 3312–3315.
151 151. Shibata, Y.; Yamanaka, M. J. Org. Chem. 2013, 78, 3731–3736.
152 152. Saito, K.; Miyashita, H.; Akiyama, T. Org. Lett. 2014, 16, 5312–5315.
153 153. Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 11740–11743.
154 154. Saito, K.; Akiyama, T. Angew. Chem. Int. Ed. 2016, 55, 3148–3152.
155 155. (a) Zhang, Z.; Jain, P.; Antilla, J. C. Angew. Chem. Int. Ed. 2011, 50, 10961–10964. (b) See also, Enders, D.; Stöckela, B. A.; Rembiaka, A. Chem. Commun. 2014, 50, 4489–4491.
156 156. Na, F.; Lopez, S. S.; Beauseigneur, A.; Hernandez, L. W.; Sun, Z.; Antilla, J. C. Org. Lett. 2020, 22, 5953–5957.
157 157. Yang, K.; Lou, Y.; Wang, C.; Qi, L.‐W.; Fang, T.; Zhang, F.; Xu, H.; Zhou, L.; Li, W.; Zhang, G.; Yu, P.; Song, Q. Angew. Chem. Int. Ed. 2020, 59, 3294–3299.
158 158. Wang, Z.; Ai, F.; Wang, Z.; Zhao, W.; Zhu, G.; Lin, Z.; Sun, J. J. Am. Chem. Soc. 2015, 137, 383–389.
159 159. Sun, Z.; Winschel, G. A.; Borovika, A.; Nagorny, P. J. Am. Chem. Soc. 2012, 134, 8074–8077.
160 160. Lin, J.‐S.; Yu, P.; Huang, L.; Zhang, P.; Tan, B.; Liu, X.‐Y. Angew. Chem. Int. Ed. 2015, 54, 7847–7851.
161 161. Yu, Z.‐L.; Cheng, Y.‐F.; Jiang, N.‐C.; Wang, J.; Fan, L.‐W.; Yuan, Y.; Li, Z.‐L.; Gu, Q.‐S.; Liu, X.‐Y. Chem. Sci. 2020, 11, 5987–5993.
162 162. Samanta, R. C.; Yamamoto, H. J. Am. Chem. Soc. 2017, 139, 1460–1463.
163 163. Ackermann, L.; Althammer, A. Synlett 2008, 995–998.
164 164. Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P. S. J.; Bykov, D.; Farès, C.; List, B. Science 2018, 359, 1501–1505.
165 165. Zhang, P.; Tsuji, N.; Ouyang, J.; List, B. J. Am. Chem. Soc. 2021, 143, 675–680.
166 166. Zhao, W.; Qian, H.; Li, Z.; Sun, J. Angew. Chem. Int. Ed. 2015, 54, 1910–1913.
167 167. Li, X.; Duan, M.; Deng, Z.; Shao, Q.; Chen, M.; Zhu, G.; Houk, K. N.; Sun, J. Nat. Catal. 2020, 3, 1010–1019.
168 168. Li, F.; Korenaga, T.; Nakanishi, T.; Kikuchi, J.; Terada, M. J. Am. Chem. Soc. 2018, 140, 2629–2642.
169 169. Kayal, S.; Kikuchi, J.; Shimizu, M.; Terada, M. ACS Catal. 2019, 9, 6846–6850.
170 170. Ma, D.; Miao, C.‐B.; Sun, J. J. Am. Chem. Soc. 2019, 141, 13783–13787.
171 171. Wang, H. W.; Zhu, J. J. Am. Chem. Soc. 2019, 141, 11372–11377.
172 172. Monaco, M. R.; Poladura, B.; Dias de los Bernardos, M.; Leutzsch, M.; Goddard, R.; List, B. Angew. Chem. Int. Ed. 2014, 53, 7063–7067.
173 173. Liao, S.; Čorić, I.; Wang, Q.; List, B. J. Am. Chem. Soc. 2012, 134, 10765–10768.
174 174. Liao, S.; Leutzsch, M.; Monaco, M. R.; List, B. J. Am. Chem. Soc. 2016, 138, 5230–5233.
175 175. (a) For reviews, see: Shirakawa, S.; Liu, S.; Kaneko, S. Chem. Asian J. 2016, 11, 330–341. (b) Renzi, P. Org. Biomol. Chem. 2017, 15, 4506–4516. (c) Wang, Y.‐B.; Tan, B. Acc. Chem. Res. 2018, 51, 534–547. (d) Corti, V.; Bertuzzi, G. Synthesis 2020, 52, 2450–2468.
176 176. Xiang, S.; Cheng, J. K.; Tan, B. (this issue). Chapter 19 – Asymmetric synthesis of axially chiral compounds. In: Akiyama, T. and Ojima, I. Catalytic Asymmetric Synthesis, 4e, Wiley.
177 177. Shibata, T. (this issue). Chapter 20 – Asymmetric synthesis of planar‐chiral and helically chiral compounds. In: Akiyama, T. and Ojima, I. Catalytic Asymmetric Synthesis, 4e, Wiley.
178 178. (a) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336–11337. (b) Jiang, G.; Halder, R.; Fang, Y.; List, B. Angew. Chem. Int. Ed. 2011, 50, 9752–9755. (c) Jiang, G.; List, B. Adv. Synth. Catal. 2011, 353, 1667–1670.
179 179. Cai, Q.; Zhao, Z.‐A.; You, S.‐L. Angew. Chem. Int. Ed. 2009, 48, 7428–7431.
180 180. Hu, W.; Xu, X.; Zhou, J.; Liu, W.‐J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.‐Z. J. Am. Chem. Soc. 2008, 130, 7782–7783.
181 181. (a) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427–2440. (b) Lv, F.; Liu, S.; Hu, W. Asian J. Org. Chem. 2013, 2, 824–836.
182 182. Li, J.; Zhang, D.; Chen, J.; Ma, C.; Hu, W. ACS Catal. 2020, 10, 4559–4565.
183 183. Zhang, D.; Zhou, J.; Xia, F.; Kang, Z.; Hu, W. Nat. Commun. 2015, 6, 5801.
184 184. Qiu, H.; Li, M.; Jiang, L.‐Q.; Lv, F.‐P.; Zan, L.; Zhai, C.‐W.; Doyle, M. P.; Hu, W.‐H. Nature Chem. 2012, 4, 733–738.
185 185. (a) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735–17738. (b) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546–1556. (c) For a recent example, see: Roos, C. B.; Demaerel, J.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2020, 142, 5974–5979.
186 186. For a review, see: Yin, Y.; Zhao, X.; Qiao, B.; Jiang, Z. Org. Chem. Front. 2020, 7, 1283–1296.
187 187. Masson, G. (this issue). Chapter 8 – Asymmetric visible‐light photoredox catalysis. In: Akiyama, T. and Ojima, I. Catalytic Asymmetric Synthesis, 4e, Wiley.