Читать книгу Meteorologie - Hans Häckel - Страница 58
Kondensationsprozesse
ОглавлениеDie Kondensation erfolgt in Form winziger kugelförmiger Tröpfchen. Wir wissen aber aus dem vorhin Gesagten (→ Kap. 2.2.1, S. 70), dass über Tröpfchen, vor allem über sehr kleinen Tröpfchen, der Sättigungsdampfdruck infolge der Oberflächenspannung (→ Kap. 2.1.6, S. 69) zum Teil erheblich größer ist als in Tabelle 2.2 angegeben, da sich die dortigen Werte auf eine ebene Wasseroberfläche beziehen. Sättigung über einer ebenen Wasserfläche bedeutet also noch lange nicht Sättigung in Bezug auf die Tröpfchen.
Ein Beispiel möge die Zusammenhänge verdeutlichen: Angenommen, es hätten sich Tröpfchen mit einem Radius von 0,01 µm gebildet. Über ihnen ist der Sättigungsdampfdruck gegenüber der ebenen Wasseroberfläche um 12 % erhöht. Für die Tröpfchen beträgt die relative Feuchte in der Umgebung also nicht 100 %, sondern (da der Sättigungsdampfdruck im Nenner um 12 % größer ist) nur rund 90 %. Die entstandenen Tröpfchen würden also allmählich wieder verdunsten.
So einfach wie oben geschildert kann also die Kondensation in der Atmosphäre nicht vor sich gehen, zumal man weiß, dass auch noch viel kleinere Tröpfchen existenzfähig sind. Wie aber dann? In der experimentellen Atomphysik werden zum Nachweis von Elementarteilchen sogenannte Nebel- oder Kondensationskammern benützt. Man kann darin Luft adiabatisch abkühlen und auf diese Weise den in ihr enthaltenen Wasserdampf zur Kondensation bringen. Verwendet man für solche Versuche sorgfältig von allen Verunreinigungen befreite Luft, so setzt die Tröpfchenbildung erst bei einer relativen Feuchtigkeit von größenordnungsmäßig 800 % ein. Offensichtlich haben also die üblicherweise in der Luft vorhandenen Feststoffpartikel (Aerosole) einen Einfluss auf die Kondensation.
Aus der Luftchemie
Welchen großen Einfluss Aerosole auf die Kondensation von Wasserdampf in der Luft haben, zeigen Untersuchungen am Forschungszentrum Karlsruhe. Sie ergaben, dass die täglichen Niederschlagsmengen im Mittel jeweils zu Beginn der Woche am geringsten sind, dass sie im Lauf der Woche bis zu 15 % zunehmen und samstags ihre Höchstwerte erreichen. Am Wochenende nehmen sie ab, um mit Beginn der neuen Woche erneut anzusteigen. Als Ursache dieses Phänomens sehen die Karlsruher Forscher den an den Wochenenden verringerten Aerosolausstoß durch Industrie und Verkehr. Im Lauf der Woche reichern sich dann die Aerosole wieder an und führen zu verstärkter Kondensation und Niederschlagsbildung. Parallel dazu hat auch die Niederschlagshäufigkeit ein Wochenend-Minimum und steigt während der Woche um 10 %. Ähnliches gilt für die Bewölkung. Genau umgekehrt ist es – wegen der Abschattwirkung der Aerosole – beim Sonnenschein.
Analysiert man diese Aerosolpartikel auf ihre chemischen Eigenschaften hin, so stellt man fest, dass eine ganze Reihe von ihnen kleine Salzkristalle sind. Sie stammen größtenteils aus den Weltmeeren, von wo aus sie über teilweise komplizierte Vorgänge in die Luft gekommen sind (→ Abb. 2.7), von Vulkanausbrüchen, Waldbränden oder künstlichen Feuern, teilweise auch aus Industrieabgasen. Ihre Zahl ist sehr groß. Sie schwankt zwischen 100/cm3 in sehr reiner und 1 Mio. in verschmutzter Großstadtluft. Ihr Größenspektrum schwankt zwischen 10–4 und 1 µm.
Abb. 2.7 In den sich brechenden Wellenkämmen entstehen zahlreiche, rasch aufsteigende Luftbläschen. Bevor sie die Wasseroberfläche erreichen, bilden sie eine hauchdünne „Blasenhaut” (1). Beim Platzen dieser Haut entstehen Hunderte von nur wenigen µm großen Tröpfchen (2), die rasch verdunsten und die in ihnen enthaltenen Salze freisetzen. Gleichzeitig werden aus den Bläschen bis zu einem Dutzend „Jettröpfchen” hochgeschleudert (3), die ebenfalls verdunsten und Salzkristalle freisetzen. (Nach Roedel 2000, etwas abgeändert)
Würde Kondensation an einem solchen Kristall stattfinden, so würde sich das Salz im Tröpfchen auflösen und infolge der daraus resultierenden hygroskopischen Wirkung den Sättigungsdampfdruck reduzieren (→ Kap. 2.1.2, S. 59). Da das Tröpfchen zunächst sehr klein ist, würde die Salzkonzentration sehr hoch und damit die dampfdrucksenkende Wirkung entsprechend stark sein. 70 In der Tat hat sich dieser Vorgang als wesentlicher Teil des Tröpfchenbildungsprozesses herausgestellt. Die beteiligten Salzkristalle nennt man Kondensationskerne.
Wie leicht einzusehen, ist bei sehr kleinen Tröpfchen die Salzkonzentration sehr hoch. Die hygroskopisch bedingte Dampfdruckerniedrigung überwiegt dadurch die Dampfdruckerhöhung infolge der Oberflächenspannung bei weitem. Das bedeutet nicht nur, dass mithilfe von hygroskopischen Kondensationskernen selbst kleinste Wassertröpfchen entstehen, sondern auch, dass sie ohne zu verdunsten dauerhaft existieren können. Mehr noch: Unter bestimmten Voraussetzungen bilden sich sogar schon in ungesättigter Luft über Kondensationskernen winzige Tröpfchen. So erklärt sich die bekannte Tatsache, dass die Luft mit zunehmender Feuchtigkeit diesig wird. Dann haben sich, obwohl noch keine Sättigung eingetreten ist, bereits winzige Tröpfchen konzentrierter Salzlösung gebildet, die das Licht streuen (→ Kap. 3.2.2, S. 150) und dadurch die Sicht verringern.
Mit zunehmendem Tropfenradius und gleichzeitig abnehmender Salzkonzentration kommt dann aber der Oberflächeneffekt immer mehr zur Geltung. Ab einem bestimmten Tröpfchenradius beginnt die Oberflächenspannung die Überhand zu gewinnen: Über dem Tröpfchen wird dann der resultierende Sättigungsdampfdruck größer als über einer ebenen Oberfläche und damit setzt Verdunstung ein (→ Abb. 2.8). Ab jetzt müssen andere Prozesse für das weitere Wachstum der Tröpfchen sorgen.
Abb. 2.8 Zur Tropfenbildung in der Atmosphäre (Einzelheiten siehe Text).