Читать книгу Management of Radioactive Waste - Jean-Claude Amiard - Страница 31
1.4.2. Wastes related to the nuclear fuel cycle
ОглавлениеA distinction should be made between two fuel cycles, the so-called open NFC and the closed NFC, the latter reprocessing spent nuclear fuel in order to reuse the extracted by-products (uranium and plutonium) in other reactors, whereas in the case of the open NFC, the spent fuel is considered as radioactive waste and therefore disposed of. A representation of the two types of fuel cycle is shown in Figure 1.3.
Figure 1.3. The various stages of the nuclear fuel cycles in open and closed versions (source: [OJO 14]). HLW: high-level waste; MOX: mixed oxide; NFC: nuclear fuel cycle; Pu: plutonium; SNF: spent nuclear fuel; U: uranium; UF6: uranium hexafluoride. For a color version of this figure, see www.iste.co.uk/amiard/radioactive.zip
The number of states reprocessing civilian spent fuel in 2013 was still six (China, France, India, Japan, the United Kingdom and Russia) with a theoretical annual reprocessing capacity of 5,900 tons to be increased to 6,700 tons [OJO 14]. In 2020, the United Kingdom gave up reprocessing and Japan has had its plants shut down for many years.
The chemical and radioactive composition of HLW varies greatly from state to state. Thus, for transuranium elements, the quantities present in HLW, expressed in g.L-1, are 2.0 for the British Magnox reactors, 5.1 for the waste from the La Hague reprocessing plant in France, 7.6 for the WIP (Waste Immobilization Plant) in India, 12.6 for the waste from the Tokai reprocessing plant in Japan and <0.1 for American Hanford waste. Similarly for fission products, the quantities expressed in g.L-1 are 87.0 at La Hague, 1.1 at the Indian WIP, 49.0 for the Japanese Tokai plant and <2.5 for the Hanford waste. This can be explained by the characteristics of the reactors and nuclear fuels used, as well as by the cooling methods used and the reprocessing technologies [OJO 14].