Читать книгу Биология. Человек. 8 класс - Группа авторов - Страница 13

Глава 3. Строение организма
§ 8. Ткани

Оглавление

1. Из какой ткани состоит кожа, стенки полости рта, ушные и носовые хрящи?

2. Можно ли ушную раковину считать тканью?


Образование тканей. В начале деления все клетки развивающегося зародыша одинаковы, но затем происходит их специализация. Некоторые из них выделяют межклеточное вещество. Группы клеток и межклеточное вещество, имеющие сходное строение и происхождение, выполняющие общие функции, называются тканями. Каждый орган состоит из нескольких тканей, но одна из них, как правило, преобладает.

В организме животных и человека выделяют четыре основные группы тканей: эпителиальные, соединительные, мышечные и нервные. В мышцах, например, преобладает мышечная ткань, но наряду с ней встречаются и соединительная, и нервная. Ткань может состоять как из одинаковых, так и из различных клеток.

Межклеточное вещество может быть однородным или может включать различные структурные образования, например, в виде пучков волокон, придающих тканям эластичность и упругость.

Эпителиальные (покровные) ткани (рис. 16) образуют наружные слои кожи (эпидермис), выстилают внутреннюю поверхность кровеносных сосудов, дыхательных путей, мочеточников. К эпителиальным тканям относится и железистая ткань, вырабатывающая различные секреты (пот, слюну, желудочный сок, сок поджелудочной железы).


Рис. 16. Эпителиальные ткани: А – плоский эпителий; Б – кубический эпителий; В – мерцательный эпителий; Г – цилиндрический эпителий, выстилающий канальца почки, в которых образуется вторичная моча

Многообразие функций привело к значительному разнообразию эпителиальных тканей. Однако все они имеют ряд общих свойств. Их клетки располагаются тесными рядами в один или несколько слоёв, имеют незначительное количество межклеточного вещества, могут слущиваться и заменяться новыми. Эпителиальные ткани обладают высокой способностью к регенерации (восстановлению). В связи с разнообразием функций строение клеток эпителиальных тканей различается. Так, мерцательный эпителий дыхательных путей имеет реснички, с помощью которых удаляется пыль, осевшая на влажную поверхность трахеи и бронхов. Эпителиальные клетки желудка способны накапливать секрет в цитоплазме. Затем они отторгаются, попадают в полость желудка и там разрушаются, высвобождая пищеварительные ферменты.

Соединительные ткани. Эти ткани обладают ещё большим разнообразием (рис. 17). К ним относятся опорные ткани – хрящевая и костная; жидкие ткани – кровь и лимфа, рыхлая волокнистая ткань, заполняющая пространство между органами, сопровождающая сосуды и нервы; жировая ткань; плотная волокнистая ткань, входящая в состав сухожилий и связок.


Рис. 17. Соединительные ткани: А – хрящ: 1 – неклеточное вещество; 2 – клетки; Б – кость: 1 – костные клетки; 2 – неклеточное вещество в форме пластинок (их ряды выстилают полости, в которых проходят сосуды и нервы; костные пластинки расположены в несколько рядов, радиально, по их периметру находятся клетки): В – жировая ткань: 1 – клетки; 2 – эластические волокна; Г – рыхлая соединительная ткань: 1 – клетки; 2 – коллагеновые волокна; 3 – эластические волокна


Все эти разнообразные ткани обладают высокой способностью к регенерации и имеют общую особенность – наличие хорошо развитого межклеточного вещества, определяющего механические свойства ткани. В костной ткани оно твёрдое и прочное, в хрящевой – прочное и эластичное. В крови оно жидкое, так как выполняет транспортную функцию.

Соединительная ткань встречается в оболочках органов, которым приходится сильно растягиваться: в матке, желудке, кровеносных сосудах и пр. Благодаря соединительной ткани кожа может смещаться относительно мышц и костей, к которым прикреплена.

В соединительной ткани есть клетки, способные бороться с микроорганизмами, а в случае поражения основной ткани какого-либо органа эта ткань способна заменить утраченные элементы. Так, образующиеся после ранений шрамы состоят из соединительной ткани. Правда, выполнять функции той ткани, которую соединительная ткань заменила, она не может.

Разновидности мышечной ткани. Существует три разновидности мышечной ткани: гладкая, поперечнополосатая скелетная (рис. 18) и поперечнополосатая сердечная. Общие свойства всех мышечных тканей – возбудимость и сократимость. В ответ на раздражение мышечная ткань сокращается. Благодаря сокращению осуществляются все движения человека и работа его внутренних органов.

Гладкая мышечная ткань состоит из веретеновидных клеток с одним палочковидным ядром. Эта ткань входит в состав стенок сосудов и внутренних органов, например желудка, кишечника, бронхов, то есть органов, работающих помимо нашей воли, автоматически. С помощью гладких мышц изменяются размеры зрачка, кривизна хрусталика глаза и т. д.

Гладкие мышцы сокращаются медленно, но могут очень долго находиться в состоянии сокращения.

Поперечнополосатая скелетная мышечная ткань образует скелетные мышцы, которые сокращаются произвольно, то есть по нашему желанию. Сокращение происходит в том случае, когда к мышце приходят электрические импульсы из соответствующих отделов нервной системы. Скелетные мышцы способны к быстрому сокращению, но длительно пребывать в сокращённом состоянии им сложно. Поперечнополосатая мышечная ткань состоит из длинных многоядерных волокон. Ядра мышечного волокна обычно располагаются под наружной мембраной. Среднюю часть мышечного волокна занимают сократительные нити – миофибриллы. Они состоят из чередующихся пластинок белков разной плотности (актина и миозина), поэтому в оптическом микроскопе кажутся исчерченными поперёк (поперечнополосатыми).


Рис. 18. Мышечные ткани: А – гладкая; Б – поперечнополосатая скелетная


Поперечнополосатая сердечная мышечная ткань тоже состоит из мышечных волокон, но они имеют ряд особенностей. Сердечные мышечные волокна представляют собой цепочку особых мышечных клеток – миоцитов. Эти клетки соединены между собой особыми контактами. Благодаря такому строению возбуждение, возникшее в одном месте, быстро охватывает всю мышечную ткань, участвующую в сокращении.

Нервная ткань. Эта ткань состоит из двух типов клеток: собственно нервных клеток – нейронов и вспомогательных клеток – нейроглии.

Особенность нейронов – высокая возбудимость и проводимость. Они получают сигналы из внешней и внутренней среды организма, проводят и перерабатывают их, что необходимо для управления работой органов. Нейроны собраны в очень сложные цепи, которые обеспечивают получение, переработку, хранение и использование информации (рис. 19).

Многочисленные клетки нейроглии, расположенные между нейронами, выполняют по отношению к ним обслуживающие функции: защитную и опорную, питательную и электроизолирующую. Заполняя пространство между нервными клетками, глиальные клетки предохраняют их от механических сотрясений. Другие глиальные клетки выполняют барьерную функцию, пропуская к нейронам из крови только строго определённые вещества.


Рис. 19. Нервные клетки (сеть нейронов) (микрофотография)


Нейрон состоит из тела и отростков (рис. 20). В теле нейрона находится ядро и основные клеточные органоиды. Отростки нейрона различаются по строению, форме и функциям.

Дендрит – отросток, передающий возбуждение к телу нейрона. Чаще всего у нейрона несколько коротких разветвлённых дендритов. Однако бывают нейроны, у которых имеется только один длинный дендрит.

Аксон – это длинный отросток, который передаёт информацию от тела нейрона к следующему нейрону или к рабочему органу. У каждого нейрона только один аксон. Аксон ветвится только на конце, образуя короткие веточки – терминали.

Длинные отростки нейронов, покрытые защитными оболочками, образуют нервные волокна.


Рис. 20. Строение нейрона: А – нейрон: 1 – ядро, находящееся в теле нейрона; 2 – дендриты; 3 – аксон; 4 – синапсы; 5 – волокна поперечнополосатой мышцы; Б – синапс (увеличен): 6 – окончание аксона нейрона, передающего информацию; 7 – клетка, воспринимающая информацию; 8 – пузырьки с биологически активным веществом; 9 – митохондрия


Места контактов между отдельными нейронами или между нейронами и управляемыми ими клетками называют синапсами (рис. 20, Б).

В расширенном окончании аксона в специальных пузырьках – везикулах находится биологически активное вещество из группы нейромедиаторов. Когда нервный импульс, распространяющийся по аксону, достигает его окончания, пузырьки приближаются к мембране, встраиваются в неё, и молекулы медиатора выбрасываются в синаптическую щель. Эти химические вещества действуют на мембрану другой клетки и таким способом передают информацию следующему нейрону или клетке управляемого органа. Нейромедиатор может активировать следующую клетку, вызвав в ней возбуждение. Однако существуют медиаторы, которые приводят к угнетению следующего нейрона. Этот процесс называют торможением. Возбуждение и торможение – это важнейшие процессы, происходящие в нервной системе. Именно благодаря сбалансированности этих двух противоположных процессов в каждый момент времени нервные импульсы могут возникать только в строго определённой группе нервных клеток. Наше внимание, способность сконцентрироваться на определённой деятельности возможны благодаря нейронам, которые отсекают избыточную информацию. Не будь их, наша нервная система очень быстро бы перегрузилась и не смогла нормально работать.

Воспринимающие информацию клетки обычно имеют много синапсов. Через одни из них они получают активирующие сигналы, через другие – тормозные. Все эти сигналы суммируются, после чего следует изменение работы.

По функциям все нейроны можно разделить на три группы: чувствительные, вставочные и исполнительные. Чувствительные нейроны – это нервные клетки, которые находятся «на входе» в нервную систему. Они воспринимают информацию из внешней и внутренней среды. «На выходе» из нервной системы расположены исполнительные нейроны. К этой группе относят двигательные нейроны, управляющие мышцами (гладкими и поперечнополосатыми), и секреторные, передающие нервные импульсы железам. Вставочные нейроны обрабатывают всю полученную информацию и обеспечивают связь между чувствительными и исполнительными нейронами.

ТКАНИ: ЭПИТЕЛИАЛЬНЫЕ, СОЕДИНИТЕЛЬНЫЕ, МЫШЕЧНЫЕ, НЕРВНАЯ; НЕЙРОНЫ, ДЕНДРИТЫ, АКСОН, НЕЙРОГЛИЯ, НЕРВНОЕ ВОЛОКНО, СИНАПС.

Вопросы

1. Что называют тканью?

2. Какие ткани вы знаете? Составьте и заполните схему «Многообразие тканей».

3. Чем соединительные ткани отличаются от эпителиальных?

4. Какие виды эпителиальной и соединительной ткани вы знаете?

5. Какими свойствами обладают клетки мышечной ткани – гладкой, скелетной, сердечной?

6. Какие функции выполняют клетки нейроглии?

7. Каково строение и свойства нейронов?

8. Сравните дендриты и аксоны. В чём их сходство и в чём принципиальные отличия?

9. Что такое синапс? Расскажите о принципах его работы.

Задания

1. Отыщите у себя или у своих знакомых на коже шрамы. Определите, из какой ткани они состоят. Объясните, почему они не загорают и отличаются по структуре от здоровых участков кожи.

2. Посмотрите под микроскопом образцы эпителиальных и соединительных тканей. С помощью рисунков 16 и 17 расскажите об их строении.

3. На рисунке 20 найдите тело нейрона, ядро, дендриты и аксон. Определите, в каком направлении по отросткам пойдут нервные импульсы, если клетка будет возбуждена.

4. Известно, что грудную и брюшную полости разделяет диафрагма, участвующая в дыхании. Из гладких или поперечнополосатых мышц она состоит? Задержите дыхание, сделайте произвольный вдох и выдох и ответьте на этот вопрос.

5. Существует множество классификаций нейронов. Некоторые из них вам уже известны. Используя дополнительные источники информации, предложите другие классификации, отличные от представленных в учебнике.

Биология. Человек. 8 класс

Подняться наверх