Читать книгу Bauphysik-Kalender 2022 - Nabil Fouad A., Nabil A. Fouad - Страница 72

Beispiel Altbaudach

Оглавление

Anhand des folgenden Altbaudaches (Bild 20) wird exemplarisch aufgezeigt, dass die Grenzziehung der Holzfeuchte für die hygrothermische Bemessung geeignet ist. Bei älteren Dächern befindet sich unterhalb der hinterlüfteten Dachziegel oder unter einer Verblechung oder Verschieferung häufig eine Bitumenbahn auf einer Holzschalung, die als Unterdach dient. Will man solche Dächer energetisch von innen sanieren und den Sparrenzwischenraum dämmen, entsteht eine außen dampfdichte Konstruktion. Wird auf der Innenseite eine Dampfbremse mit einem hohen Wasserdampfdiffusionswiderstand eingebaut (bspw. sd = 10 m), haben diese sogenannten „Dicht-Dicht-Konstruktionen“ keine Austrocknungsmöglichkeiten und damit ein hohes Schadenspotenzial. Da immer bei der Luftdichtheit mit Restleckagen zu rechnen ist, feuchten solche Konstruktionen auf. Sie sind daher nicht mehr Stand der Technik. Erst wenn der innere sd-Wert reduziert oder mit einer feuchtevariablen Dampfbremse gearbeitet wird, besteht zum Innenraum hin ein gewisses Austrocknungspotenzial durch sommerliche Umkehrdiffusion. Damit die eingedrungene Feuchte aus dem Winter im Sommer überhaupt rücktrocknet, ist aber die Erwärmung der Dachfläche erforderlich. Demzufolge sind besonders nordorientierte Dächer, die sich in Folge einer geringen Sonneneinstrahlung kaum erwärmen, besonders gefährdet. Das untersuchte Dach hat daher eine nach Norden orientierte 40° geneigte Dachfläche. Die Dampfbremse auf der Unterseite des Daches ist feuchtevariabel und als Dämmung kommt Zellulosefaser zum Einsatz.


Bild 20. Saniertes Altbaudach

Aufbau von außen nach innen:

1. Ziegel mit Lattung

2. Bitumenbahn

3. Holzschalung 20 mm

4. Zellulosedämmung 200 mm

5. feuchtevariable Dampfbremse

6. Installationsebene mit GKB-Platte

Randbedingungen für die Simulation: Klima Holzkirchen: Ø-Temp. 6,6 °C Dachneigung: 40°; nordorientiert Luftdichtheit q50 = 3 m3/m2 h normale Feuchtelast nach WTA MB 6-2. Start: 20 °C / 80 % rel. Luftfeuchte

01.10. Startfeuchte Zellulose: 5,45 kg/m3


Bild 21. Die Auswertung der Holzfeuchte in der Schalung. Durch den fehlenden Temperaturbezug kann das Schadensrisiko nicht beurteilt werden. Der grüne und rote Balken zeigt die Zeiträume an, die in Bild 22a und b beispielhaft ausgewertet werden.

Die Holzfeuchte der Schalung steigt im ersten Winter auf 24 M.-% und trocknet dann innerhalb von 4 Jahren im Maximum des Jahreszyklus auf 20 M.-% (Bild 21). Ob die Konstruktion durch Holz zerstörende Pilze gefährdet ist, ist aus dieser Darstellung aber nicht ersichtlich. Die anfänglichen 24 M.-% erscheinen zunächst als hoch. Eine vereinfachte Grenzziehung bei 20 M.-% würde die Konstruktion als nicht funktionsfähig ausweisen. Aus der Praxis sind aber ausreichende Erfahrungen vorhanden, dass diese Konstruktion funktioniert. Betrachtet man hingegen Bild 22a, so ist gut zu erkennen, dass zum einen die Grenzkurve im ersten Jahr nicht überschritten wird, da die anfänglichen hohen Feuchten auf Grund der zu dieser Zeit herrschenden niedrigeren Temperaturen kein Problem darstellen. Zum anderen nehmen die Feuchten immer weiter ab (Bild 22b). Durch die jährliche Reduktion zeigt die Konstruktion ein ausreichendes Trocknungspotenzial.

Bauphysik-Kalender 2022

Подняться наверх