Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 298

Begründung 4-1 Die Phasenregel

Оглавление

Wir betrachten zunächst den Spezialfall eines Einkomponentensystems, für das die Phasenregel F = 3 – P ergibt. Für zwei Phasen α und β im Gleichgewicht (P = 2, F = 1) bei gegebenen Werten von Druck und Temperatur gilt


Für Wasser und Eis im Gleichgewicht wäre beispielsweise μ(l; p, T) = μ(s; p, T). Diese Beziehung gibt einen Zusammenhang zwischen p und T wieder; das bedeutet, nur eine der beiden Variablen ist unabhängig (so wie x + y = xy eine Gleichung für y als Funktion von x ist: y = x/(x – 1)). Diese Beobachtung steht im Einklang mit F = 1. Für drei Phasen im Gleichgewicht gilt


In dieser Zeile stecken tatsächlich zwei Gleichungen mit zwei Unbekannten, μ(α; p, T) = μ(β; p, T) und μ(β; p, T) = μ(γ; p, T), nur ein einziges Wertepaar (p, T) erfüllt daher dieses Gleichungssystem (ebenso wie das Gleichungssystem x + y = xy und 3xy = xy als einzige Lösung das Wertepaar (x = 2, y = 2) besitzt.) Dies steht im Einklang mit F = 0. Vier Phasen können in einem Einkomponentensystem nicht im Gleichgewicht vorliegen, weil in dem Gleichungssystem


drei Gleichungen für zwei Unbekannte (p und T) vorliegen und es daher keine Lösung besitzt (ähnlich wie das Gleichungssystem x + y = xy,3xy = xy und x + y = 2xy2).

Nun gehen wir zum allgemeinen Fall über. Zunächst zählen wir die intensiven Variablen (Zustandsgrößen, die nicht von der Größe des Systems abhängen): Mit Druck p und Temperatur T sind wir bei 2. Die Zusammensetzung ist vollständig bestimmt, wenn der Molenbruch von (C – 1) Komponenten bekannt ist (es ist nicht erforderlich, alle Molenbrüche zu kennen, da durch x1 + x2 +. .. + xC = 1 einer der Molenbrüche festgelegt ist, wenn alle anderen bekannt sind). Wenn P Phasen vorliegen, gibt es somit insgesamt P(C – 1) Variablen für die Zusammensetzung. Die Gesamtzahl der intensiven Variablen ist damit P(C – 1) + 2.

Im Gleichgewicht hat das chemische Potenzial eines Stoffs in jeder Phase denselben Wert (siehe Abschnitt 4.2.1):


Für jede Komponente müssen demnach P–1 Gleichungen erfüllt sein. Wenn die Anzahl der Komponenten C ist, ergeben sich insgesamt C(P – 1) Gleichungen. Durch jede wird die Anzahl der unabhängigen intensiven Variablen (ausgehend von P(C – 1) + 2) um 1 reduziert; damit ergibt sich für die Anzahl der Freiheitsgrade des Systems


Dies ist gerade Gl. (4-1).

Physikalische Chemie

Подняться наверх