Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 40

G.3 Makroskopische Materie

Оглавление

Das Wichtigste in Kürze: (a) Makroskopische Materie kommt in drei Aggregatzuständen vor: als Gas, Flüssigkeit oder Festkörper. (b) Der Zustand einer makroskopischen Probe wird durch Angabe ihrer Eigenschaften wie Masse, Volumen, Menge, Druck oder Temperatur festgelegt. (c) Die Zustandsgleichung idealer Gase ist eine Beziehung zwischen Druck, Volumen, Stoffmenge und Temperatur eines idealisierten Gases.

Makroskopische Materie besteht aus einer großen Zahl von Atomen, Molekülen oder Ionen. Sie kann als Festkörper, Flüssigkeit oder Gas vorliegen:

 Ein Festkörper ist eine Substanz, die eine feste Form besitzt und diese auch beibehält, egal in welchen Behälter man sie bringt.

 Eine Flüssigkeit nimmt die Gestalt des Behälters an, in dem sie sich befindet (bzw. in einem Schwerefeld des unteren Teils des Behälters), und ist von dem ungenutzten Teil des Behälters durch eine definierte Grenzfläche getrennt.

 Ein Gas nimmt die Gestalt des Behälters an, in dem es sich befindet, und füllt stets das gesamte zur Verfügung stehende Volumen aus.

Flüssigkeiten und Gase sind Beispiele für den kondensierten Zustand. Flüssigkeiten und Gase bezeichnet man gemeinsam oft als Fluide: als Reaktion auf Kräfte, die von außen auf sie einwirken (z. B. die Schwerkraft) können sie fließen.

Der Zustand einer makroskopischen Probe wird festgelegt, indem man die Werte einer Reihe von Eigenschaften angibt. Zu ihnen gehören:

 Die Masse m, ein Maß für die Menge einer Substanz (Einheit: Kilogramm, kg).

 Das Volumen V , ein Maß für den von der Probe eingenommenen Raum (Einheit: Kubikmeter, m3).

 Die Stoffmenge n, ein Maß für die Zahl von Teilchen (Atome, Moleküle oder Formeleinheiten) in der Probe (Einheit: Mol, mol).

Eine extensive Eigenschaft ist eine Eigenschaft die von der Substanzmenge in einer Probe abhängt; eine intensive Eigenschaft ist eine Eigenschaft, die nicht von der Menge der Substanz abhängt. Das Volumen oder die Masse sind beispielsweise extensive Größen, die Massendichte ρ = m/V (Masse dividiert durch Volumen) ist eine intensive Größe.

Die Stoffmenge n (umgangssprachlich auch die „Molzahl“ genannt), ist ein Maß für die Zahl der Teilchen in einer Probe. Die offizielle Bezeichnung dieser Größe ist „Stoffmenge“, oft spricht man aber kurz von der „Menge“. Die Einheit 1 mol ist als die Zahl von Kohlenstoffatomen in exakt 12 g Kohlenstoff 12 definiert. Die Zahl von Teilchen in einem Mol Substanz wird als Avogadrokonstante NA bezeichnet; ihr Zahlenwert ist 6.022 × 1023 mol–1 (NA ist somit eine Konstante mit einer Einheit und keine reine Zahl, weshalb die gelegentlich anzutreffende Bezeichnung „Avogadrozahl“ falsch ist!). Die molare Masse oder Molmasse M einer Substanz (Einheit: formal Kilogramm pro Mol, in der Praxis meist eher Gramm pro Mol, g mol–1) ist die Masse pro Mol Atome, Moleküle oder Formeleinheiten. Die Stoffmenge einer aus bekannten Teilchen bestehenden Probe kann sehr einfach berechnet werden:

(g.1)

Eine Probe kann einem Druck p (Einheit Pascal, Pa; 1 Pa = 1 kg m–1 s–2) ausgesetzt werden. Dieser ist definiert als die einwirkende Kraft F dividiert durch die Fläche A, auf die diese Kraft wirkt. Eine gasförmige Probe übt auf die Wände des Behälters, in dem sie sich befindet, einen Druck aus, da sich ihre Moleküle in einer unaufhörlichen zufälligen Bewegung befinden und eine Kraft auf die Wand ausüben. Die Häufigkeit dieser Stöße ist unter normalen Bedingungen so groß, dass wir die Kraft – und folglich den Druck – als stetig wahrnehmen. Obwohl das Pascal die SI-Einheit (Abschnitt G.6) des Drucks ist, werden Drücke oft auch in bar (1 bar = 105 Pa) oder Atmosphären (1 atm = 101 325 Pa (exakt)) angegeben, die beide dem typischen Druck der uns umgebenden Atmosphäre entsprechen. Da viele physikalischen Eigenschaften von Substanzen vom Druck abhängen, ist es sinnvoll, einen Standarddruck zu wählen, für den man Werte dieser Größen tabelliert. Dieser Standarddruck ist gegenwärtig exakt p = 1 bar. Auf die Rolle dieses Standarddrucks werden wir in Kapitel 2 zurückkommen.

Um den Zustand einer Probe vollständig festzulegen, müssen wir auch ihre Temperatur T angeben. Formal ist die Temperatur eine Größe, die angibt, in welcher Richtung Energie in Form von Wärme fließen wird, wenn wir zwei Systeme über eine wärmedurchlässige Wand im Kontakt stehen: Energie fließt vom System mit der höheren Temperatur in das System mit der niedrigeren Temperatur. Das Symbol T verwenden wir für die thermodynamische Temperatur, die eine absolute Skala mit dem Anfangspunkt T = 0 ist. Temperaturen oberhalb von T = 0 werden meist auf der Kelvinskala angegeben, in der die Temperaturintervalle in Kelvin (K) eingeteilt sind. Sie ist dadurch definiet, dass man die Temperatur des Tripelpunkts von Wasser (die Temperatur, bei der Eis, flüssiges Wasser und Wasserdampf miteinander im Gleichgewicht stehen) als 273.16 K definiert. Experimentell findet man, dass der Gefrierpunkt von Wasser (der Schmelzpunkt von Eis) bei 1 atm gerade 0.01 K unter dem Tripelpunkt liegt, also bei 273.15 K. Die Kelvinskala ist für alltägliche Temperaturmessungen unbequem, sodass man hier meist die Celsiusskala verwendet, die wir anhand der Kelvinskala als

Physikalische Chemie

Подняться наверх