Читать книгу Welding Metallurgy - Sindo Kou - Страница 85

References

Оглавление

1 1 Kou, S. and Le, Y. (1984). Heat flow during the autogenous GTA welding of pipes. Metallurgical Transactions A 15 (6): 1165–1171.

2 2 Kou, S. (1987). Welding Metallurgy, 1e. New York: Wiley.

3 3 Lu, M. and Kou, S. (1988). Power and current distributions in gas tungsten arcs. Welding Journal 67 (2): 29s–34s.

4 4 Giedt, W.H., Tallerico, L.N., and Fuerschbach, P.W. (1989). GTA welding efficiency: calorimetric and temperature field measurements. Welding Journal 68 (1): 28s–32s.

5 5 Fuerschbach, P.W. and Knorovsky, G.A. (1991). A study of melting efficiency in plasma arc and gas tungsten arc welding: a method for selecting optimal weld schedules to minimize net heat input is derived frm calorimetric measurements. Welding Journal 70 (11): 287s–297s.

6 6 Fuerschbach, P.W. and Knorovsky, G.A. (1998). Cathodic cleaning and heat input in variable polarity plasma arc welding of aluminum. Welding Journal 77 (2): 76s.

7 7 DuPont, J.N. and Marder, A.R. (1995). Thermal efficiency of arc welding processes. Welding Journal 74 (12): 406s–416s.

8 8 DuPont, J.N. and Marder, A.R. (1996). Dilution in single pass arc welds. Metallurgical and Materials Transactions B 27 (3): 481–489.

9 9 Evans, D.M., Huang, D., McClure, J.C., and Nunes, A.C. (1998). Arc efficiency of plasma arc welding. Welding Journal 77 (2): 53s–58s.

10 10 Lu, M.J. and Kou, S. (1989). Power inputs in gas metal arc welding of aluminum—part II. Welding Journal 68 (11): 452s–456s.

11 11 Lu, M.J. and Kou, S. (1989). Power inputs in gas metal arc welding of aluminum: part 1. Welding Journal 68 (9): 382s–388s.

12 12 Essers, W.G. and Van Gompel, M.R.M. (1984). Arc control with pulsed gma welding. Welding Journal 63 (6): 26s–32s.

13 13 Hasegawa, M., and Goto, H., IIW Document 212‐212‐71. 1971, International Welding Institute: London.

14 14 Xie, J. and Kar, A. (1999). Laser welding of thin sheet steel with surface oxidation. Welding Journal 78: 343s–348s.

15 15 Glickstein, S.S. (1976). Temperature measurements in a free burning arc. Welding Journal 55 (8): 222s–229s.

16 16 Savage, W.F., Strunck, S.S., and Ishikawa, Y. (1965). The effect of electrode geometry in gas tungsten‐ arc welding. Welding Journal 44 (11): 489s–496s.

17 17 Key, J.F. (1980). Anode/cathode geometry and shielding gas interrelationships in GTAW. Welding Journal 59 (12): 364s–370s.

18 18 Nestor, O.H. (1962). Heat intensity and current density distributions at the anode of high current, inert gas arcs. Journal of Applied Physics 33 (5): 1638–1648.

19 19 Schoeck, P.A. (1963). An investigation of the anode energy balance of high intensity arcs in argon. In: Modern Developments in Heat Transfer, 353–400.

20 20 Tsai, N. ( 1983). Heat distribution and weld bead geometry in arc welding. Doctoral dissertation. Massachusetts Institute of Technology.

21 21 Kou, S. and Sun, D.K. (1985). Fluid flow and weld penetration in stationary arc welds. Metallurgical and Materials Transactions A 16 (1): 203–213.

22 22 Oreper, G.M., Eagar, T.W., and Szekely, J. (1983). Convection in arc weld pools. Welding Journal 62 (11): 307s–312s.

23 23 Pavelic, V., Tanbakuchi, R., Uyehara, O.A., and Myers, P.S. (1969). Experimental and computed temperature histories in gas tungsten‐arc welding of thin plates. Welding Journal 48 (7): 295s–305s.

24 24 Kou, S. and Le, Y. (1983). Three‐dimensional heat flow and solidification during the autogenous GTA welding of aluminum plates. Metallurgical Transactions A 14 (11): 2245–2253.

25 25 Rosenthal, D. (1941). Mathematical theory of heat distribution during welding and cutting. Welding Journal 20 (5): 220s.

26 26 Abramowitz, M. and Stegun, I.A. (1964). Handbook of Mathematical Functions. Washington, DC: National Bureau of Standards.

27 27 Gray, T.G.F., Spence, J., and North, T.H. (1975). Prediction and Control of Distortion. Rational Welding Design, 45–70. London: Butterworth.

28 28 Adams, C.M. Jr. (1958). Cooling rates and peak temperatures in fusion welding. Welding Journal 37: 210s.

29 29 Grosh, R., Trabant, E.A., and Hawkins, G.A. (1955). Temperature distribution in solids of variable thermal properties heated by moving heat sources. Quarterly of Applied Mathematics 13 (2): 161–167.

30 30 Swift‐Hook, D.T. and Gick, A.E.F. (1973). Penetration welding with lasers. Welding Journal 52 (11): 492s–499s.

31 31 Jhaveri, P., Moffatt, W.G., and Adams, C.M. Jr. (1962). The effect of plate thickness and radiation on heat flow in welding and cutting. Welding Journal 41 (1): 12s–16s.

32 32 Myers, P.S., Uyehara, O.A., and Borman, G.L. (1967). Fundamentals of heat flow in welding. Welding Research Council Bulletin 123: 1.

33 33 Ghent, H., Hermance, C.E., Kerr, H.W., and Strong, A.N. (1979). Arc physics and weld Pool behaviour. In: Conference Proceedings, 389. Cambridge, UK: The Welding Institute.

34 34 Trivedi, R. and Srinivasan, S.R. (1974). Temperature distribution around a moving cylindrical source. Journal of Heat Transfer 96 (3): 427–428.

35 35 Grosh, R.J. and Trabant, E.A. (1956). Arc‐welding temperatures. Welding Journal 35: 396s.

36 36 Malmuth, N.D., Hall, W.F., Davis, B.I., and Rosen, C.D. (1974). Transient thermal phenomena and weld geometry in GTAW. Welding Journal 53 (9): 388s–400s.

37 37 Malmuth, N.D., Hall, W.F., Davis, B.I., and Rosen, C.D. (1976). Temperature field of a moving point source with change of state. International Journal of Heat and Mass Transfer 19 (4): 349–354.

38 38 Hunziker, O., Dye, D., and Reed, R.C. (2000). On the formation of a centreline grain boundary during fusion welding. Acta Materialia 48 (17): 4191–4201.

39 39 Kou, S. and Le, Y. (1982). The effect of quenching on the solidification structure and transformation behavior of stainless steel welds. Metallurgical and Materials Transactions A 13 (7): 1141–1152.

40 40 Lee, J.Y., Park, J.M., Lee, C.H., and Yoon, E.P. (1996). Synthesis/Processing of Light‐Weight Metallic Materials II, 49. Warrendale, PA: The Minerals, Metals and Materials Society.

41 41 Kihara, H., Suzuki, H., and Tamura, H. (1957). Researches on Weldable High‐Strength Steels, 60th Anniversary Series, vol. 1. Tokyo: Society of Naval Architects of Japan.

42 42 Liu, S., Brandi, S.D., and Thomas, R.D. (1993). ASM Handbook, vol. 6, 270. Materials Park, OH: ASM International.

43 43 Inagaki, M. and Sekiguchi, H. (1960). Continuous cooling transformation diagrams of steels for welding and their applications. Transactions of National Research Institute for Metals, Tokyo,Japan 2 (2): 102–125.

44 44 Kou, S., Kanevsky, T., and Fyfitch, S. (1982). Welding thin plates of aluminum alloys‐a quantitative heat‐flow analysis. Welding Journal 61 (6): 175s–181s.

45 45 Pavelic, V. and Tsao, K.C. (1980). Weld puddle shape and size correlation in a metal plate welded by the gas‐tungsten‐arc (GTA) process. In: Proceedings of the Conference on Arc Physics and Weld Pool Behavior, vol. 1. Arbington Hall, Cambridge: The Welding Institute.

46 46 Kou, S. and Kanevsky, T. (1982). Proceedings of the Conference on New Trends of Welding Research in the United States, 77. Materials Park, OH: ASM International.

47 47 Friedman, E. (1975). Thermomechanical analysis of the welding process using the finite element method. Journal of Pressure Vessel Technology 97 (3): 206–213.

48 48 Grill, A. (1981). Effect of current pulses on the temperature distribution and microstructure in TIG tantalum welds. Metallurgical Transactions B 12 (1): 187–192.

49 49 Grill, A. (1981). Effect of arc oscillations on the temperature distribution and microstructure in GTA tantalum welds. Metallurgical Transactions B 12 (4): 667–674.

50 50 Ushio, M., Ishimura, T., Matsuda, F., and Arata, Y. (1977). Theoretical calculation on shape of fusion boundary and temperature distribution around moving heat source (report I). Transactions of Japan Welding Research Institute 6: 1–6.

51 51 Kou, S. (1980). Proceedings of the Conference on Modeling of Casting and Welding Processes. Warrendale, PA: Metall. Society of AIME.

52 52 Friedman, E. and Glickstein, S.S. (1976). An investigation of the thermal response of stationary gas tungsten arc welds. Welding Journal 55 (12): 408s–420s.

53 53 Friedman, E. (1977). Numerical Modeling of Manufacturing Processes, 35. New York: American Society of Mechanical Engineers.

54 54 Lewis, R.W., Morgan, K., and Gallagher, R.H. (1977). Numerical Modeling of Manufacturing Processes, 67. New York: American Society of Mechanical Engineers.

55 55 Hsu, M.B. (1977). Numerical Modeling of Manufacturing Processes, 77. New York: American Society of Mechanical Engineers.

56 56 Glickstein, S.S. and Friedman, E. (1981). Effect of weld pool configuration on heat‐affected zone shape. Welding Journal 60 (6): 110s–112s.

57 57 Krutz, G.W. and Segerlind, L.J. (1978). Finite element analysis of welded structures. Welding Journal 57 (7): 211s–216s.

58 58 Paley, Z. and Hibbert, P.D. (1975). Computation of temperatures in actual weld designs. Welding Journal 54 (11): 385s–392s.

59 59 Hibbitt, H.D. and Marcal, P.V. (1973). A numerical, thermo‐mechanical model for the welding and subsequent loading of a fabricated structure. Computers & Structures 3 (5): 1145–1174.

60 60 Mazumder, J. and Steen, W.M. (1980). Heat transfer model for CW laser material processing. Journal of Applied Physics 51 (2): 941–947.

61 61 Eagar, T.W. and Tsai, N.S. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal 62 (12): 346s–355s.

62 62 Nippes, E.F. and Savage, W.F. (1949). Development of specimen simulating weld heat‐affected zones. Welding Journal 28 (11): 534s–546s.

63 63 Dynamic Systems. (2015). Press release (15 June), https://www.pr.com/press-release/624599.

64 64 Nippes, E.F., Savage, W.F., Bastian, B.J. et al. (1955). An investigation of the hot ductility of high temperature alloys. Welding Journal 34: 183s.

65 65 Nippes, E.F., Savage, W.F., and Grotke, G. (1957). Further studies of the hot‐ductility of high‐temperature alloys. Welding Research Council 33.

66 66 Widgery, D.J. (1972). Weld Thermal Simulators for Research and Problem Solving, 14. Cambridge: Welding Institute.

Welding Metallurgy

Подняться наверх