Читать книгу Global Approaches to Environmental Management on Military Training Ranges - Tracey Temple - Страница 19

1.3.4 3-Nitro-1,2,4-triazol-5-one

Оглавление

With the increasing importance of IM, previously unused energetic materials such as NTO are becoming more common. NTO has been used in IHE fills such as PAX-21, IMX-101 and IMX-104 in combination with more conventional munition constituents such as RDX and NQ [7, 67]. There are some concerns with the use of NTO due to the increased residue deposition from both high and low order detonations of ordnance using IHE fill [50, 75]. In particular, sampling after blow-in-place detonations of IMX-104 60 mm and 81 mm mortars demonstrated that up to 50% NTO may be deposited on the range [50].

NTO is highly soluble in water (16 g l−1) and dissolves in direct correlation with the volume of incident water, suggesting that it could quickly enter soil environments with transport highly dependent on the volume of rainfall [76, 77]. In addition, NTO does not sorb significantly to soil and therefore has the potential to be highly mobile [20]. Batch adsorption experiments with NTO have demonstrated very low adsorption to a variety of soils within the pH range 4.4–8.2, organic matter contents of 0.34%–5.25% and specific surface areas of 1.7–38.3 m2 g−1 [78].

Although NTO has the potential to be mobile, it is also susceptible to biodegradation with complete degradation observed within five weeks [57]. Degradation of NTO in aerobic soil cultures has been shown to occur through loss of nitrate followed by transformation to 1,2-dihydro-3H-1,2,4-triazol-3-one (ATO) (figure) [79]. However, NTO degradation by-products have yet to be detected in real soil environments, although ATO is expected to be the main intermediate before complete mineralisation [80]. Soil column studies with NTO have demonstrated that a significant percentage of NTO is rapidly biodegraded, particularly in soils with high organic content where in some cases it has not been possible to recover any of the energetic material [57, 81, 82]. Whereas in soil with low organic content, high proportions of NTO can be quickly transported with up to 100% recovery within a week [57, 81].

NTO is one of the least toxic explosives, with an oral LD50 of >5000 mg kg−1 in rats [83]. Rats exposed to 184 μg l−1 for 4 h exhibited no adverse effects, which is a good indicator of low chronic toxicity in humans [84]. However, both NTO and ATO have anomalous effects on the development of zebrafish embryos, which have neurodevelopment processes homologous to those in humans, suggesting that NTO may cause reproductive toxicity [85]. NTO exposure to skin causes mild, short-term irritation [83], and can penetrate skin at 332 μg cm−2 h−1 [86]. Although considered less toxic than TNT, the higher solubility of NTO in water compared to other explosive compounds may cause water discoloration, even at low concentrations.

Global Approaches to Environmental Management on Military Training Ranges

Подняться наверх