Читать книгу Dental Neuroimaging - Chia-shu Lin - Страница 64

References

Оглавление

1 Abrahamsen, R., Dietz, M., Lodahl, S. et al. (2010). Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain. Pain 151: 825–833.

2 Anderson, T. (1790). Pathological observations on the brain. Lond. Med. J. 11: 182–190.

3 Avivi‐Arber, L., Lee, J., Sood, C. et al. (2015). Long‐term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats. J. Comp. Neurol. 523: 2372–2389.

4 Avivi‐Arber and Sessle (2018). Jaw sensorimotor control in healthy adults and effects of ageing. J. Oral Rehabil. 45: 50–80.

5 Bandettini, P.A. (2012). Twenty years of functional MRI: the science and the stories. NeuroImage 62: 575–588.

6 Brügger, M., Lutz, K., Brönnimann, B. et al. (2012). Tracing toothache intensity in the brain. J. Dent. Res. 91: 156–160.

7 Carabotti, M., Scirocco, A., Maselli, M.A., and Severi, C. (2015). The gut‐brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28: 203–209.

8 Desouza, D.D., Moayedi, M., Chen, D.Q. et al. (2013). Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory‐triggered neuropathic pain. PLoS One 8: e66340.

9 Gazzaniga, M.S., Ivry, R.B., and Mangun, G.R. (2019). Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company.

10 Gould, D.J., Clarkson, M.J., Hutchins, B., and Lambert, H.W. (2014). How neuroscience is taught to north American dental students: results of the basic science survey series. J. Dent. Educ. 78: 437–444.

11 Gustin, S.M., Peck, C.C., Wilcox, S.L. et al. (2011). Different pain, different brain: thalamic anatomy in neuropathic and non‐neuropathic chronic pain syndromes. J. Neurosci. 31: 5956–5964.

12 Gustin, S.M., Peck, C.C., Cheney, L.B. et al. (2012). Pain and plasticity: is chronic pain always associated with somatosensory cortex activity and reorganization? J. Neurosci. 32: 14874–14884.

13 Habre‐Hallage, P., Dricot, L., Jacobs, R. et al. (2012). Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI. Eur. J. Oral Implantol. 5: 175–190.

14 Hayes, G.B. (1889). Reflex neurosis in relation to dental pathology. Am. J. Dent. Sci. 23: 289–298.

15 Horinuki, E., Shinoda, M., Shimizu, N. et al. (2015). Orthodontic force facilitates cortical responses to periodontal stimulation. J. Dent. Res. 94: 1158–1166.

16 Inamochi, Y., Fueki, K., Usui, N. et al. (2017). Adaptive change in chewing‐related brain activity while wearing a palatal plate: an functional magnetic resonance imaging study. J. Oral Rehabil. 44: 770–778.

17 Iwata, K. and Sessle, B.J. (2019). The evolution of neuroscience as a research field relevant to dentistry. J. Dent. Res. 98: 1407–1417.

18 Jenkinson, M. and Chappell, M. (2018). Introduction to Neuoimaging Analysis. Oxford University Press.Jones, D.K., Knösche, T.R., Turner, R. (2013). White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73: 239–254.

19 Kamer, A.R., Pirraglia, E., Tsui, W. et al. (2015). Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol. Aging 36: 627–633.

20 Kamiya, K., Narita, N., and Iwaki, S. (2016). Improved prefrontal activity and chewing performance as function of wearing denture in partially edentulous elderly individuals: functional near‐infrared spectroscopy study. PLoS One 11: e0158070.

21 Kaneko, M., Horinuki, E., Shimizu, N., and Kobayashi, M. (2017). Physiological profiles of cortical responses to mechanical stimulation of the tooth in the rat: an optical imaging study. Neuroscience 358: 170–180.

22 Kimoto, K., Ono, Y., Tachibana, A. et al. (2011). Chewing‐induced regional brain activity in edentulous patients who received mandibular implant‐supported overdentures: a preliminary report. J. Prosthodont. Res. 55: 89–97.

23 Kishimoto, T., Goto, T., and Ichikawa, T. (2019). Prefrontal cortex activity induced by periodontal afferent inputs downregulates occlusal force. Exp. Brain Res. 237: 2767–2774.

24 Lin, C.S. (2018). Revisiting the link between cognitive decline and masticatory dysfunction. BMC Geriatr. 18: 5.

25 Lowell, S.Y., Reynolds, R.C., Chen, G. et al. (2012). Functional connectivity and laterality of the motor and sensory components in the volitional swallowing network. Exp. Brain Res. 219: 85–96.

26 Lund, J.P. (1991). Mastication and its control by the brain stem. Crit. Rev. Oral Biol. Med. 2: 33–64.

27 Luraschi, J., Korgaonkar, M.S., Whittle, T. et al. (2013). Neuroplasticity in the adaptation to prosthodontic treatment. J. Orofac. Pain 27: 206–216.

28 Lynch, C.D., O'Sullivan, V.R., and McGillycuddy, C.T. (2006). Pierre Fauchard: the 'father of modern dentistry'. Br. Dent. J. 201: 779–781.

29 MESH (1969). Feeding Behavior [Online]. Available: www.ncbi.nlm.nih.gov/mesh/68005247 [Accessed 2021].

30 MESH (1986). Stomatognathic System [Online]. Available: https://www.ncbi.nlm.nih.gov/mesh/68013284 [Accessed 2021].

31 MESH (2012). Neuroimaging [Online]. Available: https://www.ncbi.nlm.nih.gov/mesh/68059906 [Accessed 2021].

32 Moayedi, M., Weissman‐Fogel, I., Salomons, T.V. et al. (2012). White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153: 1467–1477.

33 Nakamura, Y., Goto, T.K., Tokumori, K. et al. (2011). Localization of brain activation by umami taste in humans. Brain Res. 1406: 18–29.

34 Ono, Y., Kobayashi, G., Hayama, R. et al. (2015). Prefrontal hemodynamic changes associated with subjective sense of occlusal discomfort. Biomed. Res. Int. 2015: 395705.

35 Onozuka, M., Fujita, M., Watanabe, K. et al. (2002). Mapping brain region activity during chewing: a functional magnetic resonance imaging study. J. Dent. Res. 81: 743–746.

36 Ozdiler, O., Orhan, K., Cesur, E. et al. (2019). Evaluation of temporomandibular joint, masticatory muscle, and brain cortex activity in patients treated by removable functional appliances: a prospective fMRI study. Dentomaxillofac. Radiol. 48: 20190216.

37 Quintero, A., Ichesco, E., Myers, C. et al. (2013). Brain activity and human unilateral chewing: an FMRI study. J. Dent. Res. 92: 136–142.

38 Sessle, B.J. (2019). Can you be too old for oral implants? An update on ageing and plasticity in the oro‐facial sensorimotor system. J. Oral Rehabil. 46: 936–951.Thulborn, K.R., Waterton, J.C., Matthews, P.M., Radda, G.K. (1982). Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 714(2): 265–270.

39 Taguchi, A., Miki, M., Muto, A. et al. (2013). Association between oral health and the risk of lacunar infarction in Japanese adults. Gerontology 59: 499–506.

40 Takahashi, T., Miyamoto, T., Terao, A., and Yokoyama, A. (2007). Cerebral activation related to the control of mastication during changes in food hardness. Neuroscience 145: 791–794.

41 Talbot, E.S. (1900). Limiations in dental education. J. Am. Med. Assoc. XXXIV: 1599–1600.

42 Telischak, N.A., Detre, J.A., and Zaharchuk, G. (2015). Arterial spin labeling MRI: clinical applications in the brain. J. Magn. Reson. Imaging 41: 1165–1180.

43 Tonsekar, P.P., Jiang, S.S., and Yue, G. (2017). Periodontal disease, tooth loss and dementia: is there a link? A systematic review. Gerodontology 34: 151–163.

44 Trulsson, M., Francis, S.T., Bowtell, R., and McGlone, F. (2010). Brain activations in response to vibrotactile tooth stimulation: a psychophysical and fMRI study. J. Neurophysiol. 104: 2257–2265.

45 Weissman‐Fogel, I., Moayedi, M., Tenenbaum, H.C. et al. (2011). Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain 152: 384–396.

46 Wolpert, D.M. and Flanagan, J.R. (2016). Computations underlying sensorimotor learning. Curr. Opin. Neurobiol. 37: 7–11.

47 Xie, Q., Li, X., and Xu, X. (2013). The difficult relationship between occlusal interferences and temporomandibular disorder ‐ insights from animal and human experimental studies. J. Oral Rehabil. 40: 279–295.

48 Younger, J.W., Shen, Y.F., Goddard, G., and Mackey, S.C. (2010). Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain 149: 222–228.

49 Youssef, A.M., Gustin, S.M., Nash, P.G. et al. (2014). Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder. Pain 155: 467–475.

Dental Neuroimaging

Подняться наверх