Читать книгу The Atlas of Food - Erik Millstone - Страница 11
Оглавлениеpesticides, irrigation and machinery) tend to benefit wealthy, and especially highly subsidized, farmers but disadvantage poorer farmers who are unable to make the necessary investments. While technological change may result in more food being produced in aggregate, it may increase the number of hungry farmers by amplifying the inequalities between rich and poor. A change to less labour-intensive agricultural practices can have a devastating effect in areas where most people are, or were, employed on the land. Increasing complexity of food chains The food-supply chain cannot be represented as a simple, straight line. Foods can follow circuitous routes before people, or even animals, eat them. A large proportion of the agricultural crops produced in the industrialized countries are not consumed directly by people, but indirectly as meat, eggs, milk and dairy products, because vast quantities of grains and beans are grown only to be used as animal fodder. This may be economically efficient, but nutritionally and ecologically it is highly inefficient. As the interconnections and loops of the food-supply chain have become increasingly complex, the distance between producers and consumers has widened – both literally and metaphorically. One effect has been rising consumer concern and mistrust. The strong, if relatively short-lived, public rejection of beef in the UK in 1996, when it was officially acknowledged that BSE-contaminated meat was responsible for the degenerative brain condition vCJD, underlined how vulnerable industrialized farming is to volatile public opinion and to undetected pathogenic contamination. Food companies recognize this, which is one reason why they spend vast sums on advertising and sponsorship – to try to create trust based on brand loyalty. Advertising failed to persuade the consumers in many European countries to accept the introduction of genetically modified foods or the cultivation of GM crops; ironically it undermined public confidence in GM foods. Problems of trust in official regulatory regimes, and in the products of the food industry, have not yet been solved. In part, the resistance amongst European and Japanese consumers to GM crops has not just been grounded in concerns for food safety but also in concerns about environmental consequences and corporate strategies. GM patents give power to companies. Protecting the appearance of brand integrity has also become a driver of corporate behaviour. If public opinion changes, or adverse scientific or socio-economic findings emerge, brands can become vulnerable. One particularly tangible consequence of the increasing complexity of the food chain and distances between producers and consumers is the enduring problem of microbiological food poisoning, which continues to afflict poor and rich communities alike. As food chains have lengthened, and as commercial economies of scale have been pursued, the opportunities for pathogens to spread have increased too. Barriers to the transfer of contamination have been undermined by the astonishing speed and distance travelled by both food and people – fuelled by cheap oil. Oil is no longer cheap, yet the food economy is locked into oil-based technologies. Without plentiful oil, irrigation, agro-chemicals, shipping, flying and trucking foods over long distances becomes increasingly expensive. There are active debates concerning the environmental significance of transporting food and agricultural products, but few pretend that current practices are acceptable or that current trends are sustainable. This raises the issue of policy. Why do politicians and policy-makers seek simple solutions, if the world of food requires complex ones? Many analysts, including us, now argue that the framework for food governance needs to be transformed; a
12