Читать книгу Nanopharmaceutical Advanced Delivery Systems - Группа авторов - Страница 59

References

Оглавление

1. Mishra, M., Kumar, P., Rajawat, J.S., Malik, R., Sharma, G., Modgil, A., Nanotechnology: Revolutionizing the Science of Drug Delivery. Curr. Pharm. Des., 24, 5086–5107, 2019.

2. Suri, S.S., Fenniri, H., Singh, B., Journal of Occupational Medicine Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2, 1–6, 2007.

3. Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 16, 71, 2018.

4. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K., Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 9, 1050–1074, 2018.

5. Bedi, D., Musacchio, T., Fagbohun, O.A., Gillespie, J.W., Deinnocentes, P., Bird, R.C., Bookbinder, L., Torchilin, V.P., Petrenko, V.A., Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes. Nanomedicine Nanotechnology. Biol. Med., 7, 315–323, 2011.

6. Mubin, N., Saad Umar, M., Zubair, S., Owais, M., Selective targeting of 4SO4-N-acetylgalactosamine functionalized mycobacterium tuberculosis protein loaded chitosan nanoparticle to macrophages: Correlation with activation of immune system. Front. Microbiol., 9, 2469, 2018.

7. Malik, A., Gupta, M., Mani, R., Bhatnagar, R., Single-dose Ag85b-ESAT6–loaded poly(Lactic-co-glycolic acid) nanoparticles confer protective immunity against tuberculosis. Int. J. Nanomedicine, 14, 3129–3143, 2019.

8. Sharma, R., Raghav, R., Priyanka, K., Rishi, P., Sharma, S., Srivastava, S., Verma, I., Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci. Rep., 9, 1–14, 2019.

9. Lee, C.N., Wang, Y.M., Lai, W.F.T., Chen, T.J., Yu, M.C., Fang, C.L., Yu, F.L., Tsai, Y.H., Chang, W.H.S., Zuo, C.S., Renshaw, P.F., Super-paramagnetic iron oxide nanoparticles for use in extrapulmonary tuberculosis diagnosis. Clin. Microbiol. Infect., 18, 149–157, 2012.

10. Mignani, S., Tripathi, R.P., Chen, L., Caminade, A.M., Shi, X., Majoral, J.P., New ways to treat tuberculosis using dendrimers as nanocarriers. Pharmaceutics, 10, 105, 2018.

11. Rahman, M.A., Harwansh, R., Mirza, M.A., Hussain, S., Hussain, A., Oral lipid based drug delivery system (LBDDS): Formulation, characterization and application: a review. Curr. Drug Deliv., 8, 330–45, 2011.

12. Kalepu, S., Manthina, M., Padavala, V., Oral lipid-based drug delivery systems—an overview. Acta Pharm. Sin. B, 3, 361–372, 2013.

13. Bangham, A.D., Standish, M.M., Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 13, 238–252, 1965.

14. Allen, T.M., Liposomes. Opportunities in drug delivery. Drugs, 54, 8–14, 1997.

15. Immordino, M.L., Dosio, F., Cattel, L., Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 1, 297–315, 2006.

16. Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., Fessi, H., Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid Sci. Biotechnol., 1, 147–168, 2012.

17. Müller, R.H., Radtke, M., Wissing, S.A., Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 54, 131–155, 2002.

18. Mehnert, W. and Mäder, K., Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 64, 83–101, 2012.

19. Washington, C., Stability of lipid emulsions for drug delivery. Adv. Drug Deliv. Rev., 20, 131–145, 1996.

20. McIntosh, T.J., Simon, S.A., Needham, D., Huang, C.H., Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry, 31, 2012–2020, 1992.

21. Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X., Deng, Y., A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 10, 81–98, 2015.

22. Pattni, B.S., Chupin, V.V., Torchilin, V.P., New Developments in Liposomal Drug Delivery. Chem. Rev., 115, 10938–10966, 2015.

23. Bozzuto, G. and Molinari, A., Liposomes as nanomedical devices. Int. J. Nanomedicine, 10, 975–999, 2015.

24. Lu, Y. m., Huang, J. y., Wang, H., Lou, X. f, Liao, M. h., Hong, L. j., Tao, R. r., Ahmed, M.M., Shan, C. l., Wang, X. l., Fukunaga, K., Du, Y. z., Han, F., Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials, 35, 530–537, 2014.

25. Martins, S.M., Sarmento, B., Nunes, C., Lúcio, M., Reis, S., Ferreira, D.C., Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur. J. Pharm. Biopharm., 85, 488–502, 2013.

26. Zhang, N., Ping, Q., Huang, G., Xu, W., Cheng, Y., Han, X., Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 327, 153–159, 2006.

27. Oh, H.R., Jo, H.Y., Park, J.S., Kim, D.E., Cho, J.Y., Kim, P.H., Kim, K.S., Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin sirna to hepatocellular carcinoma. Nanomaterials, 6, 141, 2016.

28. Jiang, J., Yang, S.J., Wang, J.C., Yang, L.J., Xu, Z.Z., Yang, T., Liu, X.Y., Zhang, Q., Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur. J. Pharm. Biopharm., 76, 170–178, 2010.

29. Kawakami, S., Fumoto, S., Nishikawa, M., Yamashita, F., Hashida, M., In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm Res., 17, 3, 306–313, 2000.

30. Kuo, Y.C. and Chen, H.H., Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int. J. Pharm., 365, 206–213, 2009.

31. Slepushkin, V.A., Simões, S., Dazin, P., Newman, M.S., Guo, L.S., De Lima, M.C.P., Düzgüneş, N., Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J. Biol. Chem., 272, 2382–2388, 1997.

32. Paliwal, S.R., Paliwal, R., Vyas, S.P., A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv., 22, 231–242, 2015.

33. Litzinger, D.C. and Huang, L., Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta, 1113, 201–27, 1992.

34. Karanth, H. and Murthy, R.S.R., pH-Sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol., 59, 469–483, 2007.

35. Kashanian, S., Azandaryani, A.H., Derakhshandeh, K., New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int. J. Nanomedicine, 6, 2393–401, 2011.

36. Momekova, D., Rangelov, S., Yanev, S., Nikolova, E., Konstantinov, S., Romberg, B., Storm, G., Lambov, N., Long-circulating, pH-sensitive liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units. Eur. J. Pharm. Sci., 32, 308–317, 2007.

37. Momekova, D., Rangelov, S., Lambov, N., Long-Circulating, pH-Sensitive Liposomes. Methods Mol. Biol., 1522, 209–226, Humana Press Inc., 2017.

38. Roux, E., Stomp, R., Giasson, S., Pézolet, M., Moreau, P., Leroux, J.C., Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J. Pharm. Sci., 91, 1795–1802, 2002.

39. Yatvin, M.B., Weinstein, J.N., Dennis, W.H., Blumenthal, R., Design of liposomes for enhanced local release of drugs by hyperthermia. Science (80-.), 202, 1290–1293, 1978.

40. Manzoor, A.A., Lindner, L.H., Landon, C.D., Park, J.Y., Simnick, A.J., Dreher, M.R., Das, S., Hanna, G., Park, W., Chilkoti, A., Koning, G.A., Ten Hagen, T.L.M., Needham, D., Dewhirst, M.W., Overcoming limitations in nanoparticle drug delivery: Triggered, intravascular release to improve drug penetration into tumors. Cancer Res., 72, 5566–5575, 2012.

41. Kneidl, B., Peller, M., Winter, G., Lindner, L.H., Hossann, M., Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomedicine, 9, 4387–4398, 2014.

42. Landon, C.D., Park, J.Y., Needham, D., Dewhirst, M.W., Nanoscale drug delivery and hyperthermia: The materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J., 3, 38–64, 2011.

43. Hossann, M., Wiggenhorn, M., Schwerdt, A., Wachholz, K., Teichert, N., Eibl, H., Issels, R.D., Lindner, L.H., In vitro stability and content release properties of phosphatidylglyceroglycerol containing thermosensitive liposomes. Biochim. Biophys. Acta - Biomembr., 1768, 2491–2499, 2007.

44. Lindner, L.H., Reinl, H.M., Schlemmer, M., Stahl, R., Peller, M., Paramagnetic thermosensitive liposomes for MR-thermometry. Int. J. Hyperther., 21, 575–588, 2005.

45. McDannold, N., Fossheim, S.L., Rasmussen, H., Martin, H., Vykhodtseva, N., Hynynen, K., Heat-activated Liposomal MR Contrast Agent: Initial in Vivo Results in Rabbit Liver and Kidney. Radiology, 230, 743–752, 2004.

46. Yokoyama, M., Kwon, G.S., Okano, T., Sakurai, Y., Seto, T., Kataoka, K., Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem., 3, 295–301, 1992.

47. Kedar, U., Phutane, P., Shidhaye, S., Kadam, V., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine Nanotechnology. Biol. Med., 6, 714–729, 2010.

48. Cui, X., Mao, S., Liu, M., Yuan, H., Du, Y., Mechanism of Surfactant Micelle Formation. Langmuir, 24, 10771–10775, 2008.

49. Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 73, 137–172, 2001.

50. Kabanov, A.V., Chekhonin, V.P., Alakhov, V.Y., Batrakova, E.V., Lebedev, A.S., Melik-Nubarov, N.S., Arzhakov, S.A., Levashov, A.V., Morozov, G.V., Severin, E.S., Kabanov, V.A., The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett., 258, 343–345, 1989.

51. Singh, A., Thotakura, N., Kumar, R., Singh, B., Sharma, G., Katare, O.P., Raza, K., PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: Cellular uptake, cytotoxic and pharmacokinetic evidences. Int. J. Biol. Macromol., 95, 750–756, 2017.

52. Kumar, P., Kumar, R., Singh, B., Malik, R., Sharma, G., Chitkara, D., Katare, O.P., Raza, K., Biocompatible Phospholipid-Based Mixed Micelles for Tamoxifen Delivery: Promising Evidences from In-Vitro Anticancer Activity and Dermatokinetic Studies. AAPS PharmSciTech, 18, 2037–2044, 2017.

53. Xie, J., Lee, S., Chen, X., Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 62, 1064–1079, 2010.

54. Gharatape, A. and Salehi, R., Recent progress in theranostic applications of hybrid gold nanoparticles. Eur. J. Med. Chem., 138, 221–233, 2017.

55. Shankar, S.S., Rai, A., Ahmad, A., Sastry, M., Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 275, 496–502, 2004.

56. Philip, D., Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E Low-Dimens. Syst. Nanostructures, 42, 1417–1424, 2010.

57. Rao, Y., Inwati, G.K., Singh, M., Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Future Sci. OA., 3, FSO239, 2017.

58. Mohammed Fayaz, A., Girilal, M., Venkatesan, R., Kalaichelvan, P.T., Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf. B Biointerfaces, 88, 287–291, 2011.

59. Gopinath, K., Gowri, S., Karthika, V., Arumugam, A., Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostructure Chem., 4, 115, 2014.

60. Ismail, E.H., Saqer, A.M.A., Assirey, E., Naqvi, A., Okasha, R.M., Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells. Int. J. Mol. Sci. Artic., 19, 2612, 2018.

61. Błaszkiewicz, P., Kotkowiak, M., Coy, E., Dudkowiak, A., Laser-Induced Optoacoustic Spectroscopy Studies of Inorganic Functionalized Metallic Nanorods. J. Phys. Chem. C, 123, 27181–27186, 2019.

62. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B, 110, 7238–7248, 2006.

63. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, vol. 25, Springer, Berlin Heidelberg, 1995.

64. Prodan, E., Radloff, C., Halas, N.J., Nordlander, P., A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science (80-.), 302, 419–422, 2003.

65. Yoo, M.K., Park, I.K., Lim, H.T., Lee, S.J., Jiang, H.L., Kim, Y.K., Choi, Y.J., Cho, M.H., Cho, C.S., Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater., 8, 3005–3013, 2012.

66. Shevtsov, M.A., Nikolaev, B.P., Yakovleva, L.Y., Parr, M.A., Marchenko, Y.Y., Eliseev, I., Dobrodumov, A.V., Zlobina, O., Zhakhov, A., Ischenko, A.M., Pitkin, E., Multhoff, G., 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. J. Control. Release, 220, 329–340, 2015.

67. Turkbey, B., Agarwal, H.K., Shih, J., Bernardo, M., McKinney, Y.L., Daar, D., Griffiths, G.L., Sankineni, S., Johnson, L., Grant, K.B., Weaver, J., Rais-Bahrami, S., Harisinghani, M., Jacobs, P., Dahut, W., Merino, M.J., Pinto, P.A., Choyke, P.L., A phase i dosing study of ferumoxytol for MR lymphography at 3 T in patients with prostate cancer. Am. J. Roentgenol., 205, 64–69, 2015.

68. Dulińska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafrański, O., Karnas, K., Karewicz, A., Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel), 12, 617, 2019.

69. Huang, Y., Mao, K., Zhang, B., Zhao, Y., Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C, 70, 763–771, 2017.

70. Butoescu, N., Jordan, O., Burdet, P., Stadelmann, P., Petri-Fink, A., Hofmann, H., Doelker, E., Dexamethasone-containing biodegradable superparamagnetic microparticles for intraarticular administration: Physicochemical and magnetic properties, in vitro and in vivo drug release. Eur. J. Pharm. Biopharm., 72, 529–538, 2009.

71. Pantapasis, K., Anton, G.C., Bontas, D.A., Sarghiuta, D., Grumezescu, A.M., Holban, A.M., Bioengineered nanomaterials for chemotherapy. Nanostructures Cancer Ther., pp. 23–49, Elsevier Inc., 2017.

72. Neslihan Gursoy, R. and Benita, S., Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 58, 173–182, 2004.

73. Cherniakov, I., Domb, A.J., Hoffman, A., Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin. Drug Deliv., 12, 1121–1133, 2015.

74. Nardin, I. and Köllner, S., Successful development of oral SEDDS: screening of excipients from the industrial point of view. Adv. Drug Deliv. Rev., 142, 128–140, 2019.

75. Krishnaswamy, K. and Orsat, V., Sustainable Delivery Systems Through Green Nanotechnology. Nano-Microscale Drug Deliv. Syst. Des. Fabr., pp. 17–32, Elsevier, 2017.

76. Sanoj Rejinold, N., Muthunarayanan, M., Divyarani, V.V., Sreerekha, P.R., Chennazhi, K.P., Nair, S.V., Tamura, H., Jayakumar, R., Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J. Colloid Interface Sci., 360, 39–51, 2011.

77. Chawla, R., Jaiswal, S., Mishra, B., Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design*. Expert Opin. Drug Deliv., 11, 31–43, 2014.

78. Liechty, W.B. and Peppas, N.A., Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur. J. Pharm. Biopharm., 80, 241–246, 2012.

79. Deirram, N., Zhang, C., Kermaniyan, S.S., Johnston, A.P.R., Such, G.K., pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun., 40, 1800917, 2019.

80. Lowes, M.A., Bowcock, A.M., Krueger, J.G., Pathogenesis and therapy of psoriasis. Nature, 445, 866–873, 2007.

81. Duncan, R., The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2, 347–360, 2003.

82. Kamada, H., Tsutsumi, Y., Yoshioka, Y., Yamamoto, Y., Kodaira, H., Tsunoda, S.I., Okamoto, T., Mukai, Y., Shibata, H., Nakagawa, S., Mayumi, T., Design of a pH-Sensitive Polymeric Carrier for Drug Release and Its Application in Cancer Therapy. Clin. Cancer Res., 10, 2545–2550, 2004.

83. Ward, M.A. and Georgiou, T.K., Thermoresponsive Polymers for Biomedical Applications. Polymers (Basel), 3, 1215–1242, 2011.

84. Sánchez-Moreno, P., de Vicente, J., Nardecchia, S., Marchal, J.A., Boulaiz, H., Thermo-sensitive nanomaterials: Recent advance in synthesis and biomedical applications. Nanomaterials, 8, 935, 2018.

85. Zhong, Y., Meng, F., Deng, C., Zhong, Z., Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 15, 1955–1969, 2014.

86. Zorlutuna, P., Vrana, N.E., Khademhosseini, A., The expanding world of tissue engineering: The building blocks and new applications of tissue engineered constructs. IEEE Rev. Biomed. Eng., 6, 47–62, 2013.

87. Kaoud, H. A. E.-S., Introductory Chapter: Concepts of Tissue Regeneration. Tissue Regen., InTech, 2018.

88. Veronesi, M.C., Aldouby, Y., Domb, A.J., Kubek, M.J., Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res., 1303, 151–160, 2009.

89. Liu, Z., Jiang, M., Kang, T., Miao, D., Gu, G., Song, Q., Yao, L., Hu, Q., Tu, Y., Pang, Z., Chen, H., Jiang, X., Gao, X., Chen, J., Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials, 34, 3870–3881, 2013.

90. Cao, Y.C., Jin, R., Nam, J.M., Thaxton, C.S., Mirkin, C.A., Raman Dye-Labeled Nanoparticle Probes for Proteins. J. Am. Chem. Soc., 125, 14676–14677, 2003.

91. Uebelhoer, L., Han, J.H., Callendret, B., Mateu, G., Shoukry, N.H., Hanson, H.L., Rice, C.M., Walker, C.M., Grakoui, A., Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness. PLoS Pathog., 4, 1000143, 2008.

92. Han, J., Zhao, D., Li, D., Wang, X., Jin, Z., Zhao, K., Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel), 10, 31, 2018.

93. Zhao, K., Sun, Y., Chen, G., Rong, G., Kang, H., Jin, Z., Wang, X., Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine. Carbohydr. Polym., 149, 28–39, 2016.

94. Katz, D.E., DeLorimier, A.J., Wolf, M.K., Hall, E.R., Cassels, F.J., Van Hamont, J.E., Newcomer, R.L., Davachi, M.A., Taylor, D.N., McQueen, C.E., Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine, 21, 341–346, 2003.

95. Pavot, V., Rochereau, N., Genin, C., Verrier, B., Paul, S., New insights in mucosal vaccine development. Vaccine, 30, 142–154, 2012.

96. Lawson, L.B. and Norton, E.B., Clements, J. D., Defending the mucosa: Adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol., 23, 414–420, 2011.

97. Barba, A.A., Bochicchio, S., Dalmoro, A., Lamberti, G., Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications. Pharmaceutics, 11, 360, 2019.

98. Brigham, K.L., Meyrick, B., Christman, B., Magnuson, M., King, G., Berry, L.C., In vivo transfection of murine lungs with a functioning prokaryotic gene using a liposome vehicle. Am. J. Med. Sci., 298, 278–281, 1989.

99. Boussif, O., LezoualC’H, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., Behr, J.P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. U. S. A., 92, 7297–7301, 1995.

100. Albrecht-Buehler, G., The phagokinetic tracks of 3T3 cells. Cell, 11, 395–404, 1977.

101. Bawendi, M.G., Steigerwald, M.L., Brus, L.E., The Quantum Mechanics of Larger Semiconductor Clusters (‘Quantum Dots’). Annu. Rev. Phys. Chem., 41, 477–496, 1990.

102. Parak, W.J., Boudreau, R., Le Gros, M., Gerion, D., Zanchet, D., Micheel, C.M., Williams, S.C., Alivisatos, A.P., Larabell, C., Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks. Adv. Mater., 14, 882, 2002.

103. Salahpour Anarjan, F., Active targeting drug delivery nanocarriers: Ligands. Nano-Structures Nano-Objects, 19, 100370, 2019.

104. Agnihotri, J., Saraf., D., Khale, D., Targeting: new potential carriers for targeted drug delivery system. Int. J. Pharm. Sci. Rev. Res., 8, 117–123, 2011.

105. Rani, K. and Paliwal, S., A Review on Targeted Drug Delivery: its Entire Focus on Advanced Therapeutics and Diagnostics. Sch. J. Appl. Med. Sci., 2, 328–331, 2014.

106. Dube, D., Agrawal, G.P., Vyas, S.P., Tuberculosis: From molecular pathogenesis to effective drug carrier design. Drug Discov. Today, 17, 760–773, 2012.

107. Liposomes as drug delivery systems for the treatment of TB. - PubMed - NCBI. 6, 8, 1413–1428, 2011. https://www.ncbi.nlm.nih.gov/pubmed/22026379.

108. Mahato, R.I., Narang, A.S., Thoma, L., Miller, D.D., Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst., 20, 153–214, 2003.

109. Global Nanoparticle Nanomedicine Drug Delivery Market, Dosage, Price and Clinical Pipeline Outlook 2024, Online report. https://www.medgadget.com/2018/12/global-nanoparticle-drug-delivery-market-dosage-price-and-clinical-pipeline-outlook-2024.html.

1 * Corresponding author: rchawla.phe@iitbhu.ac.in

Nanopharmaceutical Advanced Delivery Systems

Подняться наверх