Читать книгу Groundwater Geochemistry - Группа авторов - Страница 38

References

Оглавление

1 Achary, G.S. (2014a). Studies on ground water pollution due to iron content in Cuttack city, Odisha, India. International Journal of Current Engineering and Technology 2: 86–89.

2 Achary, G.S. (2014b). Studies on ground water pollution due to iron content in Bhubaneswar, Odisha, India. International Journal of Current Engineering and Technology 4 (1): 88–93.

3 Acharya, S.K., Chakraborty, P., Lahiri, S. et al. (1999). Arsenic poisoning in the Ganges Delta. Nature 401: 545.

4 Ahmed, M.F. (2001, May). An overview of arsenic removal technologies in Bangladesh and India. Proceedings of BUET‐UNU international workshop on technologies for arsenic removal from drinking water, Dhaka (pp. 5–7).

5 Alfredo, K.A., Lawler, D.F., and Katz, L.E. (2014). Fluoride contamination in the Bongo District of Ghana, West Africa: geogenic contamination and cultural complexities. Water International 39 (4): 486–503.

6 Alam, M.O., Shaikh, W.A., Chakraborty, S. et al. (2016). Groundwater arsenic contamination and potential health risk assessment of Gangetic Plains of Jharkhand, India. Exposure and Health 8 (1): 125–142.

7  Applin, K.R. and Zhao, N. (1989). The kinetics of Fe (II) oxidation and well screen encrustation. Groundwater 27 (2): 168–174.

8 Arora, A. and Evans, R.W. (2011). Dental caries in children: a comparison of one non‐fluoridated and two fluoridated communities in NSW. New South Wales Public Health Bulletin 21 (12): 257–262.

9 Aulakh, M.S., Khurana, M.P.S., and Singh, D. (2009). Water pollution related to agricultural, industrial, and urban activities, and its effects on the food chain: case studies from Punjab. Journal of New Seeds 10 (2): 112–137.

10 Ayoob, S., Gupta, A.K., and Bhakat, P.B. (2007). Performance evaluation of modified calcined bauxite in the sorptive removal of Arsenic (III) from aqueous environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 293 (1–3): 247–254.

11 Banerjee, S., Das, B., Umlong, I.M. et al. (2011). Heavy metal contaminants of underground water in Indo Bangla border districts of Tripura, India. International Journal of ChemTech Research 3 (1): 516–522.

12 Berner, R.A. (1987). Models for carbon and sulfur cycles and atmospheric oxygen; application to Paleozoic geologic history. American Journal of Science 287 (3): 177–196.

13 Brindha, K. and Elango, L. (2011). Fluoride in groundwater: causes, implications and mitigation measures. Fluoride Properties, Applications and Environmental Management 1: 111–136.

14 Central Ground Water Board (2014). Concept Note on Geogenic Contamination of Ground Water in India. Faridabad, Haryana: Bujal Bhawan, NH‐IV www.cgwb.gov.in.

15 Chakraborti, D., Rahman, M.M., Paul, K. et al. (2002). Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58 (1): 3–22.

16 Chidambaram, S., Ramanathan, A.L., and Vasudevan, S. (2003). Fluoride removal studies in water using natural materials. Water SA 29 (3): 339–344.

17 Chetia, M., Chatterjee, S., Banerjee, S. et al. (2011). Groundwater arsenic contamination in Brahmaputra river basin: a water quality assessment in Golaghat (Assam), India. Environmental Monitoring and Assessment 173 (1–4): 371–385.

18 Cooke, T.D. and Bruland, K.W. (1987). Aquatic chemistry of selenium: evidence of biomethylation 1. Environmental Science and Technology 21: 1214–1219.

19 Dotaniya, M.L., Meena, V.D., Rajendiran, S. et al. (2017). Geo‐accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bulletin of Environmental Contamination and Toxicology 98 (5): 706–711.

20 Duggal, V., Rani, A., Mehra, R., and Balaram, V. (2017). Risk assessment of metals from groundwater in Northeast Rajasthan. Journal Geological Society of India 90: 77–84. https://doi.org/10.1007/s12594‐017‐0666‐z.

21 Ferguson, J.F. and Gavis, J. (1972). A review of the arsenic cycle in natural waters. Water Research 6: 1259–1274.

22 Garduño, H., Romani, S., Sengupta, B. et al. (2011). India Groundwater Governance Case Study. Technical Report. Washington, DC: World Bank.

23 Ghorai, S. and Pant, K.K. (2004). Investigations on the column performance of fluoride adsorption by activated alumina in a fixed‐bed. Chemical Engineering Journal 98 (1–2): 165–173.

24 Giri, S., Singh, G., Gupta, S.K. et al. (2010). An evaluation of metal contamination in surface and groundwater around a proposed uranium mining site, Jharkhand, India. Mine Water and the Environment 29 (3): 225–234.

25  Golekar, R.B., Patil, S.N., and Baride, M.V. (2013). Human health risk due to trace element contamination in groundwater from the Anjani and Jhiri river catchment area in northern Maharashtra, India. Earth Sciences Research Journal 17 (1): 17–23.

26 Gourcy, L., de Paulet, F.C., and Laurent, A. (2000). Sulfur origin and influences of water level variation on SO4 concentration in groundwater of the transboundary carboniferous limestone aquifer (Belgium, France). Procedia Earth and Planetary Science 7: 309–312.

27 Grützmacher, G., Kumar, P.S., Rustler, M. et al. (2013). Geogenic groundwater contamination – definition, occurrence and relevance for drinking water production. Zentralblatt für Geologie und Paläontologie, Teil I 1: 69–75.

28 Gupta, R. and Misra, A.K. (2018). Groundwater quality analysis of quaternary aquifers in Jhajjar district, Haryana, India: focus on groundwater fluoride and health implications. Alexandria Engineering Journal 57: 375–381.

29 Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M. et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science 298 (5598): 1602–1606.

30 Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management 92 (10): 2355–2388.

31 Helgeson, H.C. (1969). Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science 267: 729–780.

32 Hoque, B.A., Mahmood, A.A., Quadiruzzaman, M. et al. (2000). Recommendations for water supply in arsenic mitigation: a case study from Bangladesh. Public Health 114 (6): 488–494.

33 Jinwal, A., Dixit, S., and Malik, S. (2009). Some trace elements investigation in ground water of Bhopal and Sehore district in Madhya Pradesh: India. Journal of Applied Sciences and Environmental Management 13 (4): 47–50.

34 Kashyap, R., Verma, K.S., Uniyal, S.K., and Bhardwaj, S.K. (2018). Geospatial distribution of metal(loid)s and human health risk assessment due to intake of contaminated groundwater around an industrial hub of Northern India. Environmental Monitoring and Assessment 190: 136.

35 Krishna, A.K., Satyanarayanan, M., and Govil, P.K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials 167 (1–3): 366–373.

36 Kumar, M., Nagdev, R., Tripathi, R. et al. (2019). Geospatial and multivariate analysis of trace metals in tubewell water using for drinking purpose in the upper Gangetic basin, India: heavy metal pollution index. Groundwater for Sustainable Development 8: 122–133.

37 Kumari, S., Singh, A.K., Verma, A.K., and Yaduvanshi, N.P.S. (2014). Assessment and spatial distribution of groundwater quality in industrial areas of Ghaziabad, India. Environmental Monitoring and Assessment 186 (1): 501–514.

38 Kundu, M.C. and Mandal, B. (2009). Agricultural activities influence nitrate and fluoride contamination in drinking groundwater of an intensively cultivated district in India. Water, Air, and Soil Pollution 198 (1–4): 243–252.

39 Kura, N.U., Ramli, M.F., Sulaiman, W.N.A. et al. (2018). An overview of groundwater chemistry studies in Malaysia. Environmental Science and Pollution Research 25 (8): 7231–7249.

40  Lapworth, D.J., Krishan, G., MacDonald, A.M., and Rao, M.S. (2017). Groundwater quality in the alluvial aquifer system of Northwest India: new evidence of the extent of anthropogenic and geogenic contamination. Science of the Total Environment 599: 1433–1444.

41 Madhav, S., Ahamad, A., Kumar, A. et al. (2018). Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes 2 (2): 127–136.

42 Madhav, S., Ahamad, A., Singh, A.K. et al. (2020). Water pollutants: sources and impact on the environment and human health. In: Sensors in Water Pollutants Monitoring: Role of Material (eds. D. Pooja, P. Kumar, P. Singh and S. Patil), 43–62. Singapore: Springer.

43 Mahato, M.K., Singh, P.K., Tiwari, A.K., and Singh, A.K. (2016). Risk assessment due to intake of metals in groundwater of East Bokaro coalfield, Jharkhand, India. Exposure and Health 8 (2): 265–275.

44 Mahramanlioglu, M., Kizilcikli, I., and Bicer, I.O. (2002). Adsorption of fluoride from aqueous solution by acid treated spent bleaching Earth. Journal of Fluorine Chemistry 115 (1): 41–47.

45 Manikandan, S., Chidambaram, S., Ramanathan, A.L. et al. (2014). A study on the high fluoride concentration in the magnesium‐rich waters of hard rock aquifer in Krishnagiri district, Tamilnadu, India. Arabian Journal of Geosciences 7 (1): 273–285.

46 Mandal, B.K., Chowdhury, T.R., Samanta, G. et al. (1996). Arsenic in groundwater in seven districts of West Bengal, India–the biggest arsenic calamity in the world. Current Science 70: 976–986.

47 Medellin‐Castillo, N.A., Leyva‐Ramos, R., Ocampo‐Perez, R. et al. (2007). Adsorption of fluoride from water solution on bone char. Industrial and Engineering Chemistry Research 46 (26): 9205–9212.

48 Mjengera, H., and Mkongo, G. (2002). Appropriate technology for use in fluoritic areas in Tanzania, 3rd Waternet. In WARFSA Symposium on water demand management for sustainable use of water resources, University of Dar Es Salaam.

49 Mondal, N.C., Singh, V.P., Singh, V.S., and Saxena, V.K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology 388 (1–2): 100–111.

50 Mukherjee, P., Singh, C.K., and Mukherjee, S. (2012). Delineation of groundwater potential zones in arid region of India – a remote sensing and GIS approach. Water Resources Management 26 (9): 2643–2672.

51 Nicolli, H.B., Bundschuh, J., Blanco, M.D.C. et al. (2012). Arsenic and associated trace‐elements in groundwater from the Chaco‐Pampean plain, Argentina: results from 100 years of research. Science of the Total Environment 429: 36–56.

52 Nriagu, I.O. and Pacyna, I.M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature (London) 333: 134–139.

53 Pokhrel, D., Bhandari, B.S., and Viraraghavan, T. (2009). Arsenic contamination of groundwater in the Terai region of Nepal: an overview of health concerns and treatment options. Environment International 35 (1): 157–161.

54 Rahman, M.M., Dong, Z., and Naidu, R. (2015). Concentrations of Arsenic and other elements in groundwater of Bangladesh and West Bengal, India: potential cancer risk. Chemosphere 139: 54–64.

55  Rajappa, B., Manjappa, S., and Puttaiah, E.T. (2010). Monitoring of heavy metal concentration in groundwater of Hakinaka Taluk, India. Contemporary Engineering Sciences 3 (4): 183–190.

56 Raju, N.J. (2017). Prevalence of fluorosis in the fluoride enriched groundwater in semiarid parts of eastern India: geochemistry and health implications. Quaternary International 443: 265–278.

57 Raju, N.J., Dey, S., and Das, K. (2009). Fluoride contamination in groundwaters of Sonbhadra district, Uttar Pradesh, India. Current Science 96: 979–985.

58 Raju, N.J., Shukla, U.K., and Ram, P. (2011). Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast‐urbanizing center in Uttar Pradesh, India. Environmental Monitoring and Assessment 173 (1–4): 279–300.

59 Raju, N.J., Dey, S., Gossel, W., and Wycisk, P. (2012). Fluoride hazard and assessment of groundwater quality in the semiarid Upper Panda River basin, Sonbhadra district, Uttar Pradesh, India. Hydrological Sciences Journal 57 (7): 1433–1452.

60 Rao, N.S., Sunitha, B., Rambabu, R. et al. (2018). Quality and degree of pollution of groundwater, using PIG from a rural part of Telangana State, India. Applied Water Science 8 (8): 227.

61 Reddy, V.H., Prasad, P.M.N., Reddy, A.R., and Reddy, Y.R. (2012). Determination of heavy metals in surface and groundwater in and around Tirupati, Chittoor (Di), Andhra Pradesh, India. Der Pharma Chemica 4 (6): 2442–2448.

62 Saha, D. and Sahu, S. (2016). A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India. Environmental Geochemistry and Health 38 (2): 315–337.

63 Sarkar, A. and Shekhar, S. (2013). An assessment of groundwater quality of lesser contaminated aquifers in North District of Delhi. Proceeding of the Indian National Science Acadamy 79: 235–243.

64 Sarkar, M., Banerjee, A., Pramanick, P.P., and Sarkar, A.R. (2007). Design and operation of fixed bed laterite column for the removal of Fluoride from water. Chemical Engineering Journal 131 (1–3): 329–335.

65 Singh, R., Gautam, N., Mishra, A., and Gupta, R. (2011). Heavy metals and living systems: an overview. Indian Journal of Pharmacy 43 (3): 246–253.

66 Singh, S.K., Ghosh, A.K., Kumar, A. et al. (2014). Groundwater arsenic contamination and associated health risks in Bihar, India. International Journal of Environmental Research 8 (1): 49–60.

67 Sharma, V.K., McDonald, T.J., Sohn, M. et al. (2015). Biogeochemistry of selenium. A review. Environmental Chemistry Letters 13 (1): 49–58.

68 Sohrin, Y. and Bruland, K.W. (2011). Global status of trace elements in the ocean. TrAC Trends in Analytical Chemistry 30 (8): 1291–1307.

69 Srivastav, A.L., Singh, P.K., Srivastava, V., and Sharma, Y.C. (2013). Application of a new adsorbent for fluoride removal from aqueous solutions. Journal of Hazardous Materials 263: 342–352.

70 Srivastava, S.K. and Ramanathan, A.L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology 53 (7): 1509–1528.

71 Srivastava, S. and Sharma, Y.K. (2013). Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environmental Monitoring and Assessment 185 (6): 4995–5002.

72  The Bureau of Indian Standards (BIS) (2012). Indian Standard Drinking Water – Specification (Second Revision). NewDelhi: Publication Unit, BIS; 2012.

73 Tirkey, P., Bhattacharya, T., Chakraborty, S., and Baraik, S. (2017). Assessment of groundwater quality and associated health risks: a case study of Ranchi city, Jharkhand, India. Groundwater for Sustainable Development 5: 85–100.

74 Verma, C., Madan, S., and Hussain, A. (2016). Heavy metal contamination of groundwater due to fly ash disposal of coal‐fired thermal power plant, Parichha, Jhansi, India. Cogent Engineering 3 (1): 1179243.

75 Vijay, R., Khobragade, P., and Mohapatra, P.K. (2011). Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities. Environmental Monitoring and Assessment 177 (1–4): 409–418.

76 Wagh, V.M., Panaskar, D.B., Mukate, S.V. et al. (2018). Health risk assessment of heavy metal contamination in groundwater of Kadava River Basin, Nashik, India. Modeling Earth Systems and Environment 4 (3): 969–980.

77 WHO Guidelines for Drinking Water Quality (2011). 4th Edition Vol. 2 Health Criteria and other supporting information.

Groundwater Geochemistry

Подняться наверх