Читать книгу Industry 4.1 - Группа авторов - Страница 34

References

Оглавление

1 1 SEMATECH (1998). Computer Integrated Manufacturing (CIM) Framework Specification Version 2.0. SEMATECH Technology Transfer # # 93061697J‐ENG. https://bit.ly/3hDCvJH (accessed 27 Aug 2020).

2 2 Cheng, F.‐T., Shen, E., Deng, J.‐Y. et al. (1999). Development of a system framework for the computer‐integrated manufacturing execution system: a distributed object‐oriented approach. International Journal of Computer Integrated Manufacturing 12 (5): 384–402. https://doi.org/10.1080/095119299130137.

3 3 Cheng, F.‐T., Chang, C.‐F., and Wu, S.‐L. (2004). Development of holonic manufacturing execution systems. Journal of Intelligent Manufacturing 15 (2): 253–267. https://doi.org/10.1023/B:JIMS.0000018037.63935.a1.

4 4 International SEMATECH (2002). Equipment Engineering Capabilities (EEC) guidelines, v2.5. https://reurl.cc/Q3dR2o (accessed 17 Aug 2020).

5 5 Su, Y.‐C., Cheng, F.‐T., Hung, M.‐H. et al. (2006). Intelligent prognostics system design and implementation. IEEE Transactions on Semiconductor Manufacturing 19 (2): 195–207. https://doi.org/10.1109/TSM.2006.873512.

6 6 Harrison, P. (2015). An introduction to supply chain management. https://reurl.cc/Y61Yv0 (accessed 17 Aug 2020).

7 7 NEVEM‐workgroup (1989). Performance Indicators in Logistics. Bedford: IFS.

8 8 Cheng, F.‐T., Yang, H.‐C., and Lin, J.‐Y. (2004). Development of holonic information coordination systems with failure‐recovery considerations. IEEE Transactions on Automation Science and Engineering 1 (1): 58–72. https://doi.org/10.1109/TASE.2004.829350.

9 9 Chang, J. and Cheng, F.‐T. (2005). Engineering‐chain requirements for semiconductor industry. Proceedings of the 2005 IEEE Conference on Automation Science and Engineering, Edmonton, Canada (1‐2 Aug 2005). USA: IEEE.

10 10 Chang, J. and Cheng, F.‐T. (2005). Framework development of an Engineering‐Chain‐Management‐System for the semiconductor industry. Proceedings of the Thirteenth International Symposium on Temporal Representation and Reasoning, Perth, Australia (10‐12 Aug 2005). USA: IEEE.

11 11 Cheng, F.‐T., Chen, Y.‐L., and Chang, J.Y.‐C. (2012). Engineering chain: a novel semiconductor engineering collaboration model. IEEE Transactions on Semiconductor Manufacturing 25 (3): 394–407. https://doi.org/10.1109/TSM.2012.2191626.

12 12 National Coalition for Advanced Manufacturing (NACFAM) (2001). Exploiting e‐Manufacturing: Interoperability of Software Systems Used by U.S. Manufacturers.

13 13 Tag, P.‐H. and Zhang, M.‐T. (2006). e‐Manufacturing in the semiconductor industry. IEEE Robotics and Automation Magazine 13 (4): 25–32. https://doi.org/10.1109/MRA.2006.250570.

14 14 Cheng, F.‐T., Tsai, W.‐H., Wang, T.‐L. et al. (2010). Advanced e‐Manufacturing model. IEEE Robotics and Automation Magazine 17 (1): 71–84. https://doi.org/10.1109/MRA.2010.935796.

15 15 Hung, M.‐H., Cheng, F.‐T., and Yeh, S.‐C. (2005). Development of a web‐services‐based e‐diagnostics framework for the semiconductor manufacturing industry. IEEE Transactions on Semiconductor Manufacturing 18 (1): 122–135. https://doi.org/10.1109/TSM.2004.836664.

16 16 Hung, M.‐H., Wang, T.‐L., Hsu, F.‐Y. et al. (2008). Development of an interface C framework for semiconductor e‐diagnostics systems. Robotics and Computer‐Integration Manufacturing 24 (3): 370–383. https://doi.org/10.1016/j.rcim.2007.02.020.

17 17 TechTarget (2007). Manufacturing Execution Systems. http://www.bitpipe.com/rlist/term/Manufacturing‐Execution‐Systems.html ().

18 18 Lin, W.Y., Hsu, R., and Chiu, Y.T. (2005). Systems and methods for determining production availability. US Patent 20,070,016,318, filed 15 July 2005 and issued 18 Jan 2007.

19 19 Lee, H. and Whang, S. (2006). Taiwan semiconductor manufacturing company: the semiconductor services company. Stanford Graduate School of Business case: GS‐40. https://www.gsb.stanford.edu/faculty‐research/case‐studies/taiwan‐semiconductor‐manufacturing‐company‐semiconductor‐services (accessed 28 August 2020).

20 20 SEMI (2020). SEMI EDA standards: E120, E125, E132, E134. www.semi.org ().

21 21 SEMI E125 (2014). SEMI E125 ‐ Specification for Equipment Self Description (EqSD). USA: SEMI https://bit.ly/3j5C2Bj (accessed 1 September 2020).

22 22 SEMI E132 (2019). SEMI E132 ‐ Specification for Equipment Client Authentication and Authorization. USA: SEMI https://bit.ly/3haoJgS (accessed 1 September 2020).

23 23 SEMI E134 (2019). SEMI E134 ‐ Specification for Data Collection Management. USA: SEMI https://bit.ly/3fCBWPq (accessed 1 September 2020).

24 24 SEMI E133 (2018). SEMI E133 ‐ Specification for Automated Process Control Systems Interface. USA: SEMI https://bit.ly/2ESLuIF (accessed 17 Aug 2020).

25 25 International SEMATECH Manufacturing Initiative (2005). Interface C Requirements of e‐Diagnostics Guidebook (version 2.1).

26 26 Weber, A. (2007). Virtual metrology and your technology watch list: ten things you should know about this emerging technology. Future Fab International 22 (4): 52–54.

27 27 Chang, J. and Cheng, F.‐T. (2005). Application development of virtual metrology in semiconductor industry. Proc. 31st Annual Conference of the IEEE Industrial Electronics (IECON 2005), Raleigh, U.S.A. (6‐10 Nov 2005). Raleigh, USA: IEEE.

28 28 Moyne, J., del Castillo, E., and Hurwitz, A.M. (2001). Run‐to‐Run Control in Semiconductor Manufacturing. Boca Raton, FL: CRC.

29 29 Madhavan, R.(2004). Changing economics of chip design. FSA Presentation.

30 30 Werr, P. (2015). How Industry 4.0 and the internet of things are connected. https://bit.ly/2YSX8dr (accessed 17 Aug 2020).

31 31 Ferber, S. (2012). Industry 4.0 – Germany takes first steps toward the next industrial revolution. https://bit.ly/3lEQe5B (accessed 17 Aug 2020).

32 32 Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj‐Napoca, Romania (22‐24 May 2014). Cluj‐Napoca, Romania: IEEE.

33 33 Perera, C., Liu, C.H., Jayawardena, S. et al. (2015). A survey on internet of things from industrial market perspective. Access, IEEE 2: 1660–1679. https://doi.org/10.1109/ACCESS.2015.2389854.

34 34 Wan, J., Chen, M., Xia, F. et al. (2013). From machine‐to‐machine communications towards cyber‐physical systems. Computer Science and Information Systems 10 (3): 1105–1128. https://doi.org/10.2298/CSIS120326018W.

35 35 Gubbi, J., Buyya, R., Marusic, S. et al. (2013). Internet of things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems 29 (7): 1645–1660. https://doi.org/10.1016/j.future.2013.01.010.

36 36 Colombo, A.W., Bangemann, T., Karnouskos, S. et al. (2014). Industrial cloud‐based cyber‐physical systems, The IMC‐AESOP Approach. Switzerland: Springer International Publishing.

37 37 Tsai, C.‐W., Lai, C.‐F., Chiang, M.‐C. et al. (2014). Data mining for internet of things: a survey. Communications Surveys & Tutorials, IEEE 16 (1): 77–97. https://doi.org/10.1109/SURV.2013.103013.00206.

38 38 Perera, C., Zaslavsky, A., Liu, C.‐H. et al. (2014). Sensor search techniques for sensing as a service architecture for the internet of things. IEEE Sensors Journal 14 (2): 406–420. https://doi.org/10.1109/JSEN.2013.2282292.

39 39 Xia, F., Vinel, A., Gao, R. et al. (2011). Evaluating IEEE 802.15. 4 for cyber‐physical systems. EURASIP Journal on Wireless Communications and Networking 2011: 596397. https://doi.org/10.1155/2011/596397.

40 40 Sánchez López, T., Ranasinghe, D.C., Harrison, M. et al. (2012). Adding sense to the internet of things. Personal and Ubiquitous Computing 16 (3): 291–308. https://doi.org/10.1007/s00779‐011‐0399‐8.

41 41 Miorandi, D., Sicari, S., De Pellegrini, F. et al. (2012). Internet of things: vision, applications and research challenges. Ad Hoc Networks 10 (7): 1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016.

42 42 Huang, H.‐C., Lin, Y.‐C., Hung, M.‐H. et al. (2015). Development of cloud‐based automatic virtual metrology system for semiconductor industry. Robotics and Computer‐Integrated Manufacturing 34: 30–43. https://doi.org/10.1016/j.rcim.2015.01.005.

43 43 Bi, Z., Xu, L.‐D., and Wang, C. (2014). Internet of things for enterprise systems of modern manufacturing. IEEE Transactions on Industrial Informatics 10 (2): 1537–1546. https://doi.org/10.1109/TII.2014.2300338.

44 44 Mattern, F. and Floerkemeier, C. (2010). From the internet of computers to the internet of things. From Active Data Management to Event‐Based Systems and More. Lecture Notes in Computer Science 6462: 242–259. https://doi.org/10.1007/978‐3‐642‐17226‐7_15.

45 45 Li, S., Li, D.‐X., and Zhao, S. (2015). The internet of things: a survey. Information Systems Frontiers 17: 243–259. https://doi.org/10.1007/s10796‐014‐9492‐7.

46 46 Brettel, M., Friederichsen, Keller, N.M. et al. (2014). How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering 8 (1): 37–44. https://doi.org/10.5281/zenodo.1336426.

47 47 Shen, J., Majid, B.N., Xie, L. et al. (2017). Interactive UHF/UWB RFID tag for mass customization. Information Systems Frontiers 19: 1177–1190. https://doi.org/10.1007/s10796‐016‐9653‐y.

48 48 Nirmala, J. (2016). Japan embracing Industry 4.0 and IoT to leap into next industrial automation. https://bit.ly/2YXoBe4 (accessed 17 Aug 2020).

49 49 The Boston Consulting Group (2015). Industry 4.0 lifts automation and mass customization to new levels. http://goo.gl/ilYMVD (accessed 17 Aug 2020).

50 50 Gross, D. (2016). Siemens CEO Joe Kaeser on the next industrial revolution. http://goo.gl/ZSGgqo (accessed 17 Aug 2020).

51 51 Pollard, D., Chuo, S., and Lee, B. (2016). Strategies for mass customization. Journal of Business & Economics Research 14 (3): 101–110. https://doi.org/10.19030/jber.v14i3.9751.

52 52 Davis, S.M. (1989). From future perfect: mass customizing. Planning Review 17 (2): 16–21. https://doi.org/10.1108/eb054249.

53 53 Gilmore, J.H. and Pine, B.J. 2nd (1997). The four faces of mass customization. Harvard Business Review 75 (1): 91–101.

54 54 Da Silveira, G.J., Borenstein, D., and Fogliatto, F.S. (2001). Mass customization: literature review and research directions. International Journal of Production Economics 72 (1): 1–13. https://doi.org/10.1016/S0925‐5273(00)00079‐7.

55 55 Fogliatto, F.S., Da Silveira, G.J.C., and Borenstein, D. (2012). The mass customization decade: an updated review of the literature. International Journal of Production Economics 138 (1): 14–25. https://doi.org/10.1016/j.ijpe.2012.03.002.

56 56 Peng, D.X., Liu, G., and Heim, G.R. (2011). Impacts of information technology on mass customization capability of manufacturing plants. International Journal of Operations & Production Management 31 (10): 1022–1047. https://doi.org/10.1108/01443571111182173.

57 57 Halpin, J.F. (1966). Zero Defects: A New Dimension in Quality Assurance. New York: McGraw‐Hill.

58 58 Weisenberger, S. (2015). Hannover Messe Day 1 ‐ will Industry 4.0 enable zero defects? how are business models impacted by Industry 4.0. https://bit.ly/3331HDB (accessed 17 Aug 2020).

59 59 Somers, D. (2014). Enter the world of ‘Industrial 4.0’ at Hannover Messe 2014. https://goo.gl/47yfdw (accessed 17 Aug 2020).

60 60 Cheng, F.‐T., Tieng, H., Yang, H.‐C. et al. (2016). Industry 4.1 for wheel machining automation. IEEE Robotics and Automation Letters 1 (1): 332–339. https://doi.org/10.1109/LRA.2016.2517208.

61 61 Cheng, F.‐T., Hsieh, Y.‐S., Zheng, J.‐W. et al. (2017). A scheme of high‐dimensional key‐variable search algorithms for yield improvement. IEEE Robotics and Automation Letters 2 (1): 179–186. https://doi.org/10.1109/LRA.2016.2584143.

Industry 4.1

Подняться наверх