Читать книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов - Страница 50

References

Оглавление

1 1 Durinx, C., McEntyre, J., Appel, R. et al. (2017). Identifying ELIXIR core data resources. F1000 Res. 5: 2422.

2 2 Sansone, S.A., McQuilton, P., Rocca‐Serra, P. et al. (2019). FAIRsharing as a community approach to standards, repositories and policies. Nature Botechnol. 37 (4): 358–367.

3 3 Pampel, H., Vierkant, P., Scholze, F. et al. (2013). Making research data repositories visible: the re3data.org registry. PLoS One 8 (11): e78080.

4 4 Bult, C.J., Blake, J.A., Smith, C.L. et al., Mouse Genome Database Group (2019). Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 47 (D1): D801–D806.

5 5 Smith, C.M., Hayamizu, T.F., Finger, J.H. et al. (2019). The mouse Gene Expression Database (GXD): 2019 update. Nucleic Acids Res. 47 (D1): D774–D779.

6 6 Heffner, C.S., Herbert Pratt, C., Babiuk, R.P. et al. (2012). Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 3: 1218.

7 7 Lovering, R.C., Roncaglia, P., Howe, D.G. et al. (2018). Improving interpretation of cardiac phenotypes and enhancing discovery with expanded knowledge in the Gene Ontology. Circ Genom Precis Med. 11 (2): e001813.

8 8 Hill, D.P., D'Eustachio, P., Berardini, T.Z. et al. (2016). Modeling biochemical pathways in the gene ontology. Database 2016: baw126.

9 9 Gene Ontology, C., Blake, J.A., Dolan, M. et al. (2013). Gene Ontology annotations and resources. Nucleic Acids Res. 41 (Database issue): D530–D535.

10 10 Thomas, P.D., Wood, V., Mungall, C.J. et al., Gene Ontology Consortium (2012). On the use of gene ontology annotations to assess functional similarity among orthologs and paralogs: a short report. PLoS Comput. Biol. 8 (2): e1002386.

11 11 Blake, J.A. and Harris, M.A. (2008). The Gene Ontology (GO) project: structured vocabularies for molecular biology and their application to genome and expression analysis. Curr. Protoc. Bioinformatics;Chapter 7:Unit 7.2.

12 12 Krupke, D.M., Begley, D.A., Sundberg, J.P. et al. (2017). The Mouse Tumor Biology Database: a comprehensive resource for mouse models of human cancer. Cancer Res. 77 (21): e67–e70.

13 13 Begley, D.A., Sundberg, J.P., Krupke, D.M. et al. (2015). Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database. Exp. Mol. Pathol. 99 (3): 533–536.

14 14 Bult, C.J., Krupke, D.M., Begley, D.A. et al. (2015). Mouse Tumor Biology (MTB): a database of mouse models for human cancer. Nucleic Acids Res. 43 (Database issue): D818–D824.

15 15 Begley, D.A., Krupke, D.M., Neuhauser, S.B. et al. (2014). Identifying mouse models for skin cancer using the Mouse Tumor Biology Database. Exp. Dermatol. 23 (10): 761–763.

16 16 Conte, N., Mason, J.C., Halmagyi, C. et al. (2019). PDX Finder: a portal for patient‐derived tumor xenograft model discovery. Nucleic Acids Res. 47 (D1): D1073–D1079.

17 17 Motenko, H., Neuhauser, S.B., O'Keefe, M., and Richardson, J.E. (2015). MouseMine: a new data warehouse for MGI. Mamm. Genome 26 (7–8): 325–330.

18 18 Smith, C.L. and Eppig, J.T. (2015). Expanding the mammalian phenotype ontology to support automated exchange of high throughput mouse phenotyping data generated by large‐scale mouse knockout screens. J. Biomed. Semantics 6: 11.

19 19 Bello, S.M., Shimoyama, M., Mitraka, E. et al. (2018). Disease Ontology: improving and unifying disease annotations across species. Dis. Model. Mech. 11 (3): dmm032839.

20 20 Kohler, S., Doelken, S.C., Mungall, C.J. et al. (2014). The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42 (Database issue): D966–D974.

21 21 Amberger, J.S., Bocchini, C.A., Scott, A.F., and Hamosh, A. (2019). OMIM.org: leveraging knowledge across phenotype‐gene relationships. Nucleic Acids Res. 47 (D1): D1038–D1043.

22 22 Mungall, C.J., McMurry, J.A., Kohler, S. et al. (2017). The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45 (D1): D712–D722.

23 23 Alliance of Genome Resources Consortium (2019). The Alliance of Genome Resources: building a modern data ecosystem for model organism databases. Genetics 213 (4): 1189–1196.

24 24 Begley, D.A., Krupke, D.M., Neuhauser, S.B. et al. (2012). The Mouse Tumor Biology Database (MTB): a central electronic resource for locating and integrating mouse tumor pathology data. Vet. Pathol. 49 (1): 218–223.

25 25 Begley, D.A., Krupke, D.M., Vincent, M.J. et al. (2007). Mouse Tumor Biology Database (MTB): status update and future directions. Nucleic Acids Res. 35 (Database issue): D638–D642.

26 26 Bult, C.J., Krupke, D.M., Sundberg, J.P., and Eppig, J.T. (2000). Mouse tumor biology database (MTB): enhancements and current status. Nucleic Acids Res. 28 (1): 112–114.

27 27 Krupke, D.M., Begley, D.A., Sundberg, J.P. et al. (2008). The Mouse Tumor Biology database. Nat. Rev. Cancer 8 (6): 459–465.

28 28 Krupke, D.M., Naf, D., Vincent, M.J. et al. (2005). The Mouse Tumor Biology Database: integrated access to mouse cancer biology data. Exp. Lung Res. 31 (2): 259–270.

29 29 Naf, D., Krupke, D.M., Sundberg, J.P. et al. (2002). The Mouse Tumor Biology Database: a public resource for cancer genetics and pathology of the mouse. Cancer Res. 62 (5): 1235–1240.

30 30 Mikaelian, I., Nanney, L.B., Parman, K.S. et al. (2004). Antibodies that label paraffin‐embedded mouse tissues: a collaborative endeavor. Toxicol. Pathol. 32 (2): 181–191.

31 31 Morse, H.C. 3rd, Anver, M.R., Fredrickson, T.N. et al. (2002). Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100 (1): 246–258.

32 32 Kogan, S.C., Ward, J.M., Anver, M.R. et al. (2002). Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100 (1): 238–245.

33 33 Sundberg, J.P., Berndt, A., Sundberg, B.A. et al. (2011). The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice. Pathobiol. Aging Age Relat. Dis. 1: 7179.

34 34 Berndt, A., Cario, C.L., Silva, K.A. et al. (2011). Identification of Fat4 and Tsc22d1 as novel candidate genes for spontaneous pulmonary adenomas. Cancer Res. 71 (17): 5779–5791.

35 35 NCBI Resource Coordinators (2016). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44 (D1): D7–D19.

36 36 NCBI Resource Coordinators (2015). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 43 (Database issue): D6–D17.

37 37 Blake, J.A., Eppig, J.T., Kadin, J.A. et al. (2017). Mouse Genome Database (MGD)‐2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res. 45 (D1): D723–D729.

38 38 Keane, T.M., Goodstadt, L., Danecek, P. et al. (2011). Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477 (7364): 289–294.

39 39 Yalcin, B., Wong, K., Agam, A. et al. (2011). Sequence‐based characterization of structural variation in the mouse genome. Nature 477 (7364): 326–329.

40 40 Klement, J.F., Matsuzaki, Y., Jiang, Q.J. et al. (2005). Targeted ablation of the Abcc6 gene results in ectopic mineralization of connective tissues. Mol. Cell. Biol. 25 (18): 8299–8310.

41 41 Berndt, A., Li, Q., Potter, C.S. et al. (2013). A single‐nucleotide polymorphism in the Abcc6 gene associates with connective tissue mineralization in mice similar to targeted models for pseudoxanthoma elasticum. J. Invest. Dermatol. 133 (3): 833–836.

42 42 Li, Q., Guo, H., Chou, D.W. et al. (2014). Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes. PLoS One 9 (2): e89268.

43 43 Li, Q., Philip, V.M., Stearns, T.M. et al. (2019). Quantitative trait locus and integrative genomics revealed candidate modifier genes for ectopic mineralization in mouse models of pseudoxanthoma elasticum. J. Invest. Dermatol. 139 (12): 2447–2457.e7.

44 44 Dolney, D.E., Szalai, G., and Felder, M.R. (2001). Differences in charge and kinetic properties of alcohol dehydrogenase 4 from C57BL/6 mice compared to other inbred strains are associated with a cysteine120 to arginine120 substitution. Biochem. Genet. 39 (7–8): 239–250.

45 45 Sundberg, J.P., Taylor, D., Lorch, G. et al. (2011). Primary follicular dystrophy with scarring dermatitis in C57BL/6 mouse substrains resembles central centrifugal cicatricial alopecia in humans. Vet. Pathol. 48 (2): 513–524.

46 46 Brommage, R., Powell, D.R., and Vogel, P. (2019). Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis. Mod. Mech. 12 (5): dmm038224.

47 47 Meehan, T.F., Conte, N., West, D.B. et al. (2017). Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 49 (8): 1231–1238.

48 48 Low, B.E., Krebs, M.P., Joung, J.K. et al. (2014). Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN‐mediated homology‐directed repair. Invest. Ophthalmol. Vis. Sci. 55 (1): 387–395.

49 49 Elmore, S.A., Cardiff, R., Cesta, M.F. et al. (2018). A review of current standards and the evolution of histopathology nomenclature for laboratory animals. ILAR J. 59 (1): 29–39.

50 50 Dickinson, M.E., Flenniken, A.M., Ji, X. et al. (2016). High‐throughput discovery of novel developmental phenotypes. Nature 537 (7621): 508–514.

51 51 Moore, B.A., Leonard, B.C., Sebbag, L. et al. (2018). Identification of genes required for eye development by high‐throughput screening of mouse knockouts. Commun. Biol. 1: 236.

52 52 Rozman, J., Rathkolb, B., Oestereicher, M.A. et al. (2018). Identification of genetic elements in metabolism by high‐throughput mouse phenotyping. Nat. Commun. 9 (1): 288.

53 53 Sundberg, J.P., Dadras, S.S., Silva, K.A. et al. (2017). Systematic screening for skin, hair, and nail abnormalities in a large‐scale knockout mouse program. PLoS One 12 (7): e0180682.

54 54 Wang, T., Bu, C.H., Hildebrand, S. et al. (2018). Probability of phenotypically detectable protein damage by ENU‐induced mutations in the Mutagenetix database. Nat. Commun. 9 (1): 441.

55 55 Wang, T., Zhan, X., Bu, C.H. et al. (2015). Real‐time resolution of point mutations that cause phenovariance in mice. Proc. Natl. Acad. Sci. U.S.A. 112 (5): E440–E449.

56 56 Bogue, M.A., Philip, V.M., Walton, D.O. et al. (2020). Mouse Phenome Database: a data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res. 48 (D1): D716–D723.

57 57 Schofield, P.N., Bard, J.B., Boniver, J. et al. (2004). Pathbase: a new reference resource and database for laboratory mouse pathology. Radiat. Prot. Dosim. 112 (4): 525–528.

58 58 Schofield, P.N., Gruenberger, M., and Sundberg, J.P. (2010). Pathbase and the MPATH ontology. Community resources for mouse histopathology. Vet. Pathol. 47 (6): 1016–1020.

59 59 Hayamizu, T.F., Mangan, M., Corradi, J.P. et al. (2005). The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol. 6 (3): R29.

60 60 Schofield, P.N., Sundberg, J.P., Sundberg, B.A. et al. (2013). The mouse pathology ontology, MPATH; structure and applications. J. Biomed. Semantics 4 (1): 18.

61 61 Fisher, H.M., Hoehndorf, R., Bazelato, B.S. et al. (2016). DermO; an ontology for the description of dermatologic disease. J. Biomed. Semantics 7: 38.

62 62 Sundberg, B.A., Schofield, P.N., Gruenberger, M., and Sundberg, J.P. (2009). A data‐capture tool for mouse pathology phenotyping. Vet. Pathol. 46 (6): 1230–1240.

63 63 Sundberg, J.P., Sundberg, B.A., and Schofield, P. (2008). Integrating mouse anatomy and pathology ontologies into a phenotyping database: tools for data capture and training. Mamm. Genome 19 (6): 413–419.

64 64 Keenan, C.M., Baker, J.F., Bradley, A.E. et al. (2015). International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) progress to date and future plans. Toxicol. Pathol. 28 (1): 51–53.

65 65 Keenan, C.M., Baker, J., Bradley, A. et al. (2015). International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): progress to date and future plans. Toxicol. Pathol. 43 (5): 730–732.

66 66 Maronpot, R.R., Boorman, G.A., and Gaul, B.W. (1999). Pathology of the Mouse. Vienna, IL: Cache River Press.

67 67 Suttie, A.W., Leininger, J.R., and Bradley, A.E. (2017). Boorman's Pathology of the Rat, 2e. San Diego: Academic Press.

68 68 Rowe, D.W., Adams, D.J., Hong, S.H. et al. (2018). Screening gene knockout mice for variation in bone mass: analysis by μCT and histomorphometry. Curr. Osteoporos Rep. 16 (2): 77–94.

69 69 DiTommaso, T., Jones, L.K., Cottle, D.L. et al. (2014). Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse. PLoS Genet. 10 (10): e1004705.

70 70 Harding, S.D., Armit, C., Armstrong, J. et al. (2011). The GUDMAP database – an online resource for genitourinary research. Development 138 (13): 2845–2853.

71 71 Lein, E.S., Hawrylycz, M.J., Ao, N. et al. (2007). Genome‐wide atlas of gene expression in the adult mouse brain. Nature 445 (7124): 168–176.

72 72 Krishnan, A., Samtani, R., Dhanantwari, P. et al. (2014). A detailed comparison of mouse and human cardiac development. Pediatr. Res. 76 (6): 500–507.

73 73 Talman, V., Teppo, J., Poho, P. et al. (2018). Molecular atlas of postnatal mouse heart development. J. Am. Heart Assoc. 7 (20): e010378.

74 74 Amberger, J.S., Bocchini, C.A., Schiettecatte, F. et al. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43 (Database issue): D789–D798.

75 75 McKusick, V.A. (2007). Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 80 (4): 588–604.

76 76 Armit, C., Richardson, L., Venkataraman, S. et al. (2017). eMouseAtlas: an atlas‐based resource for understanding mammalian embryogenesis. Dev. Biol. 423 (1): 1–11.

77 77 Armit, C., Richardson, L., Hill, B. et al. (2015). eMouseAtlas informatics: embryo atlas and gene expression database. Mamm. Genome 26 (9–10): 431–440.

78 78 Richardson, L., Graham, L., Moss, J. et al. (2015). Developing the eHistology Atlas. Database 2015: bav105.

79 79 Graham, E., Moss, J., Burton, N. et al. (2015). The atlas of mouse development eHistology resource. Development 142 (14): 2545.

80 80 Stevenson, P., Richardson, L., Venkataraman, S. et al. (2011). The BioMart interface to the eMouseAtlas gene expression database EMAGE. Database 2011: bar029.

81 81 Armit, C., Venkataraman, S., Richardson, L. et al. (2012). eMouseAtlas, EMAGE, and the spatial dimension of the transcriptome. Mamm. Genome 23 (9–10): 514–524.

82 82 Kaufman, M.H. (1992). The Atlas of Mouse Development. London: Academic Press.

Pathology of Genetically Engineered and Other Mutant Mice

Подняться наверх