Читать книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов - Страница 93

References

Оглавление

1 1 Theiler, K. (1972). The House Mouse: Development and Normal Stages from Fertilization to 4 Weeks of Age. Berlin: Springer‐Verlag.

2 2 Rugh, R. (1990). The Mouse. Its Reproduction and Development. Oxford: Oxford University Press.

3 3 Rossant, J. and Tam, P.P.L. (2002). Mouse Development: Patterning, Morphogenesis, Organogenesis. San Diego, CA: Academic Press.

4 4 Croy, B.A., Yamada, A.T., DeMayo, F.J., and Adamson, S.L. (2014). The Guide to Investigation of Mouse Pregnancy. London: Academic Press (Elsevier).

5 5 Bolon, B. (2015). Pathology of the Developing Mouse: A Systematic Approach. Boca Raton, FL: CRC Press/Taylor & Francis.

6 6 Gossler, A. (1992). Early mouse development. In: Early Embryonic Development of Animals (ed. W. Hennig), 151–201. Berlin: Springer‐Verlag.

7 7 Kaufman, M.H. (2007). Mouse embryology: research techniques and a comparison of embryonic development between mouse and man. In: The Mouse in Biomedical Research: History, Wild Mice, and Genetics, 2e, vol. 1 (eds. J.G. Fox, S.W. Barthold, M.T. Davisson, et al.), 165–209. San Diego, CA: Academic Press/Elsevier.

8 8 Boyd, K.L. and Bolon, B. (2010). Embryonic and fetal hematopoiesis. In: Schalm's Veterinary Hematology, 6e (eds. D.J. Weiss and K.J. Wardrop), 3–7. Ames, IA: Wiley Blackwell.

9 9 Nieman, B.J. and Turnbull, D.H. (2010). Ultrasound and magnetic resonance microimaging of mouse development. Methods Enzymol. 476: 379–400.

10 10 Theiler, K. (1989). The House Mouse: Atlas of Embryonic Development. New York: Springer‐Verlag.

11 11 Kaufman, M.H. (1992). The Atlas of Mouse Development, 2e. San Diego, CA: Academic Press.

12 12 Jacobwitz, D.M. and Abbott, L.C. (1998). Chemoarchitectonic Atlas of the Developing Mouse Brain. Boca Raton, FL: CRC Press.

13 13 Paxinos, G., Halliday, G., Watson, C. et al. (2007). Atlas of the Developing Mouse Brain at E17.5, P0, and P6. San Diego, CA: Academic Press (Elsevier).

14 14 Schambra, U.B. (2007). Electronic prenatal mouse brain atlas. http://www.epmba.org (accessed 15 July 2021).

15 15 EMAP (2013). e‐Mouse Atlas, v3.5. http://www.emouseatlas.org/emap/home.html (accessed 15 July 2021).

16 16 Rossant, J. and Cross, J.C. (2001). Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2 (7): 538–548.

17 17 Watson, E.D. and Cross, J.C. (2005). Development of structures and transport functions in the mouse placenta. Physiology 20: 180–193.

18 18 Petiet, A.E., Kaufman, M.H., Goddeeris, M.M. et al. (2008). High‐resolution magnetic resonance histology of the embryonic and neonatal mouse: a 4D atlas and morphologic database. Proc. Natl. Acad. Sci. U.S.A. 105 (34): 12331–12336.

19 19 Savolainen, S.M., Foley, J.F., and Elmore, S.A. (2009). Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5. Toxicol. Pathol. 37 (4): 395–414.

20 20 Crawford, L.W., Foley, J.F., and Elmore, S.A. (2010). Histology atlas of the developing mouse hepatobiliary system with emphasis on embryonic days 9.5–18.5. Toxicol. Pathol. 38 (6): 872–906.

21 21 Bolon, B., Couto, S., Fiette, L., and Perle, K.L. (2012). Internet and print resources to facilitate pathology analysis when phenotyping genetically engineered rodents. Vet. Pathol. 49 (1): 224–235.

22 22 Ward, J.M., Elmore, S.A., and Foley, J.F. (2012). Pathology methods for the evaluation of embryonic and perinatal developmental defects and lethality in genetically engineered mice. Vet. Pathol. 49 (1): 71–84.

23 23 Swartley, O.M., Foley, J.F., Livingston, D.P. 3rd et al. (2016). Histology atlas of the developing mouse hepatobiliary hemolymphatic vascular system with emphasis on embryonic days 11.5–18.5 and early postnatal development. Toxicol. Pathol. 44 (5): 705–725.

24 24 Chen, V.S., Morrison, J.P., Southwell, M.F. et al. (2017). Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicol. Pathol. 45 (6): 705–744.

25 25 Elmore, S.A., Kavari, S.L., Hoenerhoff, M.J. et al. (2019). Histology atlas of the developing mouse urinary system with emphasis on prenatal days E10.5–E18.5. Toxicol. Pathol. 47 (7): 865–886.

26 26 Furukawa, S., Tsuji, N., and Sugiyama, A. (2019). Morphology and physiology of rat placenta for toxicological evaluation. J. Toxicol. Pathol. 32 (1): 1–17.

27 27 Elmore, S.A., Cochran, Z., Bolon, B. et al. (2021). Histology atlas of the developing mouse placenta. Toxicol. Pathol. (in press).

28 28 Clancy, B., Charvet, C.J., Darlington, R.B. et al. (2013). Translating time (across developing mammalian brains). http://translatingtime.net (accessed 15 March 2020).

29 29 Hill, M.A. (2014). Mouse development. University of New South Wales. https://embryology.med.unsw.edu.au/embryology/index.php/Mouse_Timeline_Detailed (accessed 15 July 2021).

30 30 Sulik, K.K. and Bream, P.R.J. Embryo images: normal and abnormal mammalian development. Chapel Hill, NC: University of North Carolina. Not given. http://www.med.unc.edu/embryo_images/ (accessed 15 July 2021).

31 31 Butler, H. and Juurlink, B.H.J. (1987). An Atlas for Staging Mammalian and Chick Embryos. Boca Raton, FL: CRC Press.

32 32 Kaufman, M.H. and Bard, J.B.L. (1999). The Anatomical Basis of Mouse Development. San Diego, CA: Academic Press.

33 33 Thiel, R., Chahoud, I., Jürgens, M., and Neubert, D. (1993). Time‐dependent differences in the development of somites of four different mouse strains. Teratog., Carcinog., Mutagen. 13 (6): 247–257.

34 34 Malle, D., Economou, L., Sioga, A. et al. (2004). Somitogenesis in different mouse strains. Folia Anat. 32 (1): 5–10.

35 35 Paria, B.C., Lim, H., Das, S.K. et al. (2000). Molecular signaling in uterine receptivity for implantation. Semin. Cell Dev. Biol. 11 (2): 67–76.

36 36 Ramathal, C.Y., Bagchi, I.C., Taylor, R.N., and Bagchi, M.K. (2010). Endometrial decidualization: of mice and men. Semin. Reprod. Med. 28 (1): 17–26.

37 37 Spencer, T.E. and Bazer, F.W. (2004). Conceptus signals for establishment and maintenance of pregnancy. Reprod. Biol. Endocrinol. 2: 49.

38 38 O'Neill, C., Li, Y., and Jin, X.L. (2012). Survival signaling in the preimplantation embryo. Theriogenology 77 (4): 773–784.

39 39 Bolon, B. and Ward, J.M. (2015). Anatomy and physiology of the developing mouse and placenta. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 39–98. Boca Raton, FL: CRC Press (Taylor & Francis).

40 40 Warkany, J. (1971). Sensitive or critical periods in teratogenesis: uses and abuses of embryologic timetables. In: Congenital Malformations (ed. J. Warkany), 49–52. Chicago, IL: Year Book Medical Publishing, Inc.

41 41 Daston, G.P. and Manson, J.M. (1995). Critical periods of exposure and developmental outcome. Inhalation Toxicol. 7 (6): 863–871.

42 42 Rodier, P.M. (1980). Chronology of neuron development: animal studies and their clinical implications. Dev. Med. Child Neurol. 22 (4): 525–545.

43 43 Turgeon, B. and Meloche, S. (2009). Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol. Rev. 89 (1): 1–26.

44 44 Ward, J.M. and Devor‐Henneman, D.E. (2000). Gestational mortality in genetically engineered mice: evaluating the extraembryonal embryonic placenta and membranes. In: Pathology of Genetically Engineered Mice (eds. J.M. Ward, J.F. Mahler, R.R. Maronpot, et al.), 103–122. Ames, IA: Iowa State University Press.

45 45 Georgiades, P., Ferguson‐Smith, A.C., and Burton, G.J. (2002). Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23 (1): 3–19.

46 46 Jollie, W.P. (1990). Development, morphology, and function of the yolk‐sac placenta of laboratory rodents. Teratology 41 (4): 361–381.

47 47 Adamson, S.L., Lu, Y., Whiteley, K.J. et al. (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev. Biol. 250 (2): 358–373.

48 48 Coan, P.M., Conroy, N., Burton, G.J., and Ferguson‐Smith, A.C. (2006). Origin and characteristics of glycogen cells in the developing murine placenta. Dev. Dyn. 235 (12): 3280–3294.

49 49 Pijnenborg, R. (2000). The metrial gland is more than a mesometrial lymphoid aggregate of pregnancy. J. Reprod. Immunol. 46 (1): 17–19.

50 50 Ain, R. and Soares, M.J. (2004). Is the metrial gland really a gland? J. Reprod. Immunol. 61 (2): 129–131.

51 51 Croy, B.A., van den Heuvel, M.J., Borzychowski, A.M., and Tayade, C. (2006). Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol. Rev. 214 (1): 161–185.

52 52 Picut, C.A., Swanson, C.L., Parker, R.F. et al. (2009). The metrial gland in the rat and its similarities to granular cell tumors. Toxicol. Pathol. 37 (4): 474–480.

53 53 Croy, B.A., Zhang, J., Tayade, C. et al. (2010). Analysis of uterine natural killer cells in mice. Methods Mol. Biol. 612: 465–503.

54 54 Plaks, V., Sapoznik, S., Berkovitz, E. et al. (2011). Functional phenotyping of the maternal albumin turnover in the mouse placenta by dynamic contrast‐enhanced MRI. Mol. Imag. Biol. 13 (3): 481–492.

55 55 McLaren, A. (1965). Genetic and environmental effects on foetal and placental growth in mice. J. Reprod. Fertil. 9: 79–89.

56 56 Tanaka, S., Oda, M., Toyoshima, Y. et al. (2001). Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol. Reprod. 65 (6): 1813–1821.

57 57 George, J.D. and Manson, J.M. (1986). Strain‐dependent differences in the metabolism of 3‐methylcholanthrene by maternal, placental, and fetal tissues of C57BL/6J and DBA/2J mice. Cancer Res. 46 (11): 5671–5675.

58 58 Bolon, B., Newbigging, S., and Boyd, K.L. (2017). Pathology evaluation of developmental phenotypes in neonatal and juvenile mice. Curr. Protoc. Mouse Biol. 7 (3): 191–219.

59 59 Ince, T.A., Ward, J.M., Valli, V.E. et al. (2008). Do‐it‐yourself (DIY) pathology. Nat. Biotechnol. 26 (9): 978–979. discussion 9.

60 60 Bolon, B., Garman, R., Jensen, K. et al. (2006). A ‘best practices’ approach to neuropathologic assessment in developmental neurotoxicity testing—for today. Toxicol. Pathol. 34 (3): 296–313.

61 61 Coan, P.M., Ferguson‐Smith, A.C., and Burton, G.J. (2004). Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol. Reprod. 70 (6): 1806–1813.

62 62 Weninger, W.J. and Geyer, S.H. (2008). Episcopic 3D imaging methods: tools for researching gene function. Curr. Genomics 9 (4): 282–289.

63 63 Ruberte, J., Carretero, A., and Navarro, M. (2017). Morphological Mouse Phenotyping: Anatomy, Histology and Imaging. San Diego, CA: Academic Press (Elsevier).

64 64 Tobita, K., Liu, X., and Lo, C.W. (2010). Imaging modalities to assess structural birth defects in mutant mouse models. Birth Defects Res. C Embryo Today 90 (3): 176–184.

65 65 Cleary, J.O., Modat, M., Norris, F.C. et al. (2011). Magnetic resonance virtual histology for embryos: 3D atlases for automated high‐throughput phenotyping. NeuroImage 54 (2): 769–778.

66 66 Yu, Q., Leatherbury, L., Tian, X., and Lo, C.W. (2008). Cardiovascular assessment of fetal mice by in utero echocardiography. Ultrasound Med. Biol. 34 (5): 741–752.

67 67 Bolon, B., Gabrielson, K., Cole, S. et al. (2015). Three‐dimensional imaging in mouse developmental pathology studies. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 275–290. Boca Raton, FL: CRC Press (Taylor & Francis).

68 68 Hsu, C.W., Wong, L., Rasmussen, T.L. et al. (2016). Three‐dimensional microCT imaging of mouse development from early post‐implantation to early postnatal stages. Dev. Biol. 419 (2): 229–236.

69 69 Raghunathan, R., Singh, M., Dickinson, M.E., and Larin, K.V. (2016). Optical coherence tomography for embryonic imaging: a review. J. Biomed. Opt. 21 (5): 50902.

70 70 Newbigging, S., Ward, J.M., and Bolon, B. (2015). Necropsy sampling and data collection for studying the anatomy, histology, and pathology of mouse development. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 133–173. Boca Raton, FL: CRC Press (Taylor & Francis).

71 71 McKerlie, C., Newbigging, S., and Wood, G.A. (2015). Mouse developmental pathology assessments in high‐throughput phenogenomic facilities. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 377–404. Boca Raton, FL: CRC Press (Taylor & Francis).

72 72 Bolon, B., Duryea, D., and Foley, J.F. (2015). Histotechnological processing of developing mice. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 195–210. Boca Raton, FL: CRC Press (Taylor & Francis).

73 73 Adissu, H.A., Estabel, J., Sunter, D. et al. (2014). Histopathology reveals correlative and unique phenotypes in a high‐throughput mouse phenotyping screen. Dis. Models Mech. 7 (5): 515–524.

74 74 Kimura, S., Hara, Y., Pineau, T. et al. (1996). The T/ebp null mouse: thyroid‐specific enhancer‐binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 10 (1): 60–69.

75 75 Min, H., Danilenko, D.M., Scully, S.A. et al. (1998). Fgf‐10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12 (20): 3156–3161.

76 76 Gibson‐Corley, K.N., Olivier, A.K., and Meyerholz, D.K. (2013). Principles for valid histopathologic scoring in research. Vet. Pathol. 50 (6): 1007–1015.

77 77 Boyd, K.L., Bolon, B., and Bounous, D.I. (2015). Clinical pathology analysis in developing mice. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 175–193. Boca Raton, FL: CRC Press (Taylor & Francis).

78 78 Dickinson, M.E., Flenniken, A.M., Ji, X. et al. (2016). High‐throughput discovery of novel developmental phenotypes. Nature 537 (7621): 508–514. (Corrigendum: Nature 51 (7680): 398, 2017).

79 79 International Mouse Phenotyping Consortium (IMPC) (2020). Pheno(type) search results: embryo. https://www.mousephenotype.org/data/search?term=embryo&type=pheno (accessed 15 July 2021).

80 80 Palmer, A.K. (1972). Sporadic malformations in laboratory animals and their influence on drug testing. In: Drugs and Fetal Development (eds. M.A. Klingberg, A. Abramovici and J. Chemke), 45–60. New York: Plenum Press.

81 81 The Jackson Laboratory. Mouse phenome database ‐ lethal phenotypes during embryogenesis 2001–2020. http://www.informatics.jax.org/vocab/mp_ontology/MP:0005380 (accessed 15 March 2020).

82 82 Shepard, T.H. and Lemire, R.J. (2010). Catalog of Teratogenic Agents, 13e. Baltimore, MD: Johns Hopkins University Press.

83 83 Szaba, F.M., Tighe, M., Kummer, L.W. et al. (2018). Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog. 14 (4): e1006994.

84 84 Kaufman, M., Nikitin, A.Y., and Sundberg, J.P. (2010). Histologic Basis of Mouse Endocrine System Development: A Comparative Analysis (ed. J.P. Sundberg). Boca Raton, FL: CRC Press (Taylor & Francis Group).

85 85 Baldock, R., Bard, J.B., Davidson, D.R., and Morriss‐Kay, G. (2016). Kaufman's Atlas of Mouse Development Supplement: With Coronal Sections. San Diego, CA: Academic Press (Elsevier).

86 86 Parker, G.A. and Picut, C.A. (2016). Atlas of Histology of the Juvenile Rat. San Diego, CA: Academic Press (Elsevier).

87 87 Papaioannou, V.E. and Behringer, R.R. (2012). Early embryonic lethality in genetically engineered mice: diagnosis and phenotypic analysis. Vet. Pathol. 49 (1): 64–70.

88 88 Wendling, O., Teletin, M., Ghyselinck, N.B., and Mark, M. (2011). Une procédure dédiée au phénotypage de souris porteuses de mutations ciblées, létales in utero ou à la naissance (“A procedure dedicated to the phenotyping of mice carrying targeted mutations, lethal in utero or at birth”) [original in French]. Rev. Fr. Histotechnol. 24 (1): 47–57.

89 89 Bolon, B. and La Perle, K.D.M. (2015). Principles of experimental design for mouse developmental pathology studies. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 117–132. Boca Raton, FL: CRC Press (Taylor & Francis).

90 90 Diewert, V.M. and Pratt, R.M. (1981). Cortisone‐induced cleft palate in A/J mice: failure of palatal shelf contact. Teratology 24 (2): 149–162.

91 91 Diewert, V.M. (1982). A comparative study of craniofacial growth during secondary palate development in four strains of mice. J. Craniofacial Genet. Dev. Biol. 2 (4): 247–263.

92 92 Hovland, D.N.J., Machado, A.F., Scott, W.J.J., and Collins, M.D. (1999). Differential sensitivity of the SWV and C57BL/6 mouse strains to the teratogenic action of single administrations of cadmium given throughout the period of anterior neuropore closure. Teratology 60 (1): 13–21.

93 93 The Jackson Laboratory. Mouse phenome database ‐ prenatal lethality due to placental pathology 2001–2020. http://www.informatics.jax.org/searches/Phat.cgi?id=MP:0001711 (accessed 15 July 2021).

94 94 Bolon, B. and Ward, J.M. (2015). Pathology of the placenta. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 355–376. Boca Raton, FL: CRC Press (Taylor & Francis).

95 95 Woods, L., Perez‐Garcia, V., and Hemberger, M. (2018). Regulation of placental development and its impact on fetal growth—new insights from mouse models. Front. Endocrinol. 9: 570.

96 96 Bolon, B. (2014). Pathology analysis of the placenta. In: The Guide to Investigations of Mouse Pregnancy (eds. B.A. Croy, A.T. Yamada, F. DeMayo and S.L. Adamson), 175–188. San Diego, CA: Academic Press (Elsevier).

97 97 Bolon, B., Welsch, F., and Morgan, K.T. (1994). Methanol‐induced neural tube defects in mice: pathogenesis during neurulation. Teratology 49 (6): 497–517.

98 98 Tullio, A.N., Accili, D., Ferrans, V.J. et al. (1997). Nonmuscle myosin II‐B is required for normal development of the mouse heart. Proc. Natl. Acad. Sci. U. S. A. 94 (23): 12407–12412.

99 99 Zou, X., Bolon, B., Pretorius, J.K. et al. (2009). Neonatal death in mice lacking cardiotrophin‐like cytokine (CLC) is associated with multifocal neuronal hypoplasia. Vet. Pathol. 46 (3): 514–519.

100 100 Tamura, K., Sudo, T., Senftleben, U. et al. (2000). Requirement for p38a in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102 (2): 221–231.

101 101 Withington, S.L., Scott, A.N., Saunders, D.N. et al. (2006). Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Dev. Biol. 294 (1): 67–82.

Pathology of Genetically Engineered and Other Mutant Mice

Подняться наверх