Читать книгу Renewable Energy for Sustainable Growth Assessment - Группа авторов - Страница 44

References

Оглавление

1. Kumar A., Kumar N., Baredar P., Shukla A., A review on biomass energy resources, potential, conversion and policy in India, Renewable and Sustainable Energy Reviews. 2015. 45; 530-539.

2. Annual report 2013–14. Ministry of New and Renewable Energy. (http://www.mnre.gov.in/annualreport/2010_11_English/index.htm).

3. Lauri, P., Havlík, P., Kindermann, G., Forsell, N., Böttcher, H., Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy, 2014. 66; 19-31.

4. https://www.statista.com/statistics/476338/global-capacity-of-total-bioenergy/ (accessed 05-04-2021).

5. Muresan, A.A., Attia, S. Energy efficiency in the romanian residential building stock: A literature review. Renew. Sustain. Energy Rev. 2017. 74; 349-363.

6. Contescu, C.I.; Adhikari, S.P.; Gallego, N.C.; Evans, N.D.; Biss, B.E. Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C J. Carbon Res. 2018. 4; 51.

7. Desai, B.G. CO2 emissions—Drivers across time and countries. Curr. Sci. 2018. 115; 386–387.

8. Hosseini SE, Wahid MA. Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 2013. 19; 454–62.

9. Hosseini SE, Wahid MA. Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 2012. 16; 5732-40.

10. Ravindranath N H, Hall DO. Biomass energy and environment. Oxford: Oxford University Press; 1995.

11. Williams, TO, Fernandez-Rivera, S, Kelley, T.G. The influence of socio-economic factors on the availability and utilization of crop residues as animal feeds. In: Renard, C. editor. Crop residues in sustainable mixed crop/livestock farming systems. CAB International and ICRISAT. (http://ilri.org/InfoServ/Webpub/fulldocs/CropResidues/chap%202.htm); 1997.

12. Kılkı¸ S, Krajacic G., Duic N., Rosen, M.A., Al-Nimr M.A. Advancements in sustainable development of energy, water and environment systems. Energy Convers. Manag. 2018. 176; 164–183.

13. Soltero, V.M.; Chacartegui, R.; Ortiz, C.; Velázquez, R. Potential of biomass district heating systems in rural areas. Energy 2018. 156; 132–143.

14. Williams, O.; Taylor, S.; Lester, E.; Kingman, S.; Giddings, D.; Eastwick, C. Applicability of mechanical tests for biomass pellet characterization for bioenergy applications. Materials. 2018. 11; 1329.

15. Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.K.; Jung, J.; Hyun, S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Biores. Technol. 2013. 148; 196–201.

16. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 2011. 15; 2262-89.

17. Demirbas A. Combustion of biomass. Energy Sources Part A: Recover Util Environ Eff 2007. 29; 549-61.

18. Williams A, Jones J, Ma L, Pourkashanian M. Pollutants from the combustion of solid biomass fuels. Prog Energy Combus Sci 2012. 38;113e137.

19. https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_LQ.pdf.

20. Johansson T. Increment and biomass in 26- to 91-year-old European aspen and some practical implications. Biomass Bioenergy 2002. 23; 245–55.

21. Perea-Moreno, A.-J.; García-Cruz, A.; Novas, N.; Manzano-Agugliaro, F. Rooftop analysis for solar flat plate collector assessment to achieving sustainability energy. J. Clean Prod. 2017, 148, 545–554.

22. Hoel, M., The rise and fall of bioenergy. Journal of Environment Economics and Management, 2020, 101; 102314.

23. Perea-Moreno, A.-J.; Aguilera-Ureña, M.-J.; Manzano-Agugliaro, F. Fuel properties of avocado stone. Fuel 2016, 186, 358–364.

24. Lu, C.; Li, W. A comprehensive city-level GHGs inventory accounting quantitative estimation with an empirical case of Baoding. Sci. Total Environ. 2018. 651; 601–613.

25. Perea-Moreno, M.-A.; Hernandez-Escobedo, Q.; Perea-Moreno, A.-J. Renewable Energy in Urban Areas: Worldwide Research Trends. Energies 2018. 11; 577.

26. Haykırı-Açma H. Combustion characteristics of different biomass materials. Energy Convers Manag 2003.44;155–62.

27. Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 2001.42; 1357–78.

28. Perea-Moreno, A.-J.; Perea-Moreno, M.-A.; Dorado, M.P.; Manzano-Agugliaro, F. Mango stone properties as biofuel and its potential for reducing CO2 emissions. J. Clean Prod. 2018. 190; 53–62.

29. Perea-Moreno, A.-J.; Perea-Moreno, M.-A.; Hernandez-Escobedo, Q.; Manzano-Agugliaro, F. Towards forest sustainability in Mediterranean Countries using biomass as fuel for heating. J. Clean Prod. 2017. 156; 624-634.

30. Perea-Moreno, M.A.; Manzano-Agugliaro, F.; Hernandez-Escobedo, Q.; Perea-Moreno, A.J. Peanut Shell for Energy: Properties and Its Potential to Respect the Environment. Sustainability 2018. 10; 3254.

31. Shah, M.A.; Khan, M.N.S.; Kumar, V. Biomass residue characterization for their potential application as biofuels. J. Therm. Anal. Calorim. 2018. 134; 2137-2145.

32. Wang, L.; Jing, Z.X.; Zheng, J.H.; Wu, Q.H.; Wei, F. Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals. Energy 2018.158; 607-622.

33. Perea-Moreno, M.A.; Manzano-Agugliaro, F.; Perea-Moreno, A.J. Sustainable energy based on sunflower seed husk boiler for residential buildings. Sustainability 2018. 10; 3407.

34. Nzotcha, U.; Kenfack, J. Contribution of the wood-processing industry for sustainable power generation: Viability of biomass-fuelled cogeneration in sub-saharan africa. Biomass Bioenergy 2019. 120; 324–331.

35. https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_HQ.pdf.

36. Bhattacharyya SC. Energy access problem of the poor in India: is rural electrification a remedy? Energy Policy 2006. 34; 3387–97.

37. Kishore VVN, Bhandari PM, Gupta P. Biomass energy technologies for rural infrastructure and village power—opportunities and challenges in the context of global climate change concerns. Energy Policy 2004. 32; 801–10.

38. Li, Y.; Rezgui, Y.; Zhu, H. District heating and cooling optimization and enhancement— towards integration of renewables, storage and smart grid. Renew. Sustain. Energy Rev. 2017. 72; 281–294.

39. Rather, M.A.; Khan, N.S.; Gupta, R. Production of solid biofuel from macrophyte Potamogeton lucens. Eng. Sci. Technol. 2017. 20; 168–174.

40. Demirbas, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009. 50; 1746–1760.

41. Lebaka, V. Potential bioresources as future sources of biofuels production: An Overview, in: Gupta, V., Tuohy, M.G. (eds.), Biofuel Technol. Springer, Berlin, 2013. 223-258.

42. Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Goss Eng, A., Lucht, W., Mapako, M., Masera Cerutti, O., McIntyre, T., Minowa, T., Pingoud, K.,. Bioenergy, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C. (eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge. 2011.

43. Kaltschmitt, M. Renewable energy from biomass, Introduction, in: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds.), Renewable Energy Systems. Springer, New York. 2013.

44. Tkemaladze, G.S., Makhashvili, K.A. Climate changes and photosynthesis. Ann. Agrar. Sci. 2016. 14(2), 119-126.

45. Molino, A., Chianese, S., Musmarra, D.Biomass gasification technology: the state of the art overview. J. Energy Chem. 25(1), 2016. 10-25.

46. Jacobsson, S., Johnson, A., The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy. 2000. 28(9); 625-640.

47. WBA Global bioenergy statistics, Summary Report 2018. World Bioenergy Association, www.worldenergy.org.

48. Hosseini SE, Wahid MA, Aghili N. The scenario of greenhouse gases reduction in Malaysia. Renew Sustain Energy Rev 2013. 28; 400–9.

49. Hosseini SE, Abdul Wahid M. Pollutant in palm oil production process. J Air Waste Manag Assoc 2013 (131213074436003), http://dx.doi.org/10.1080/10962247.2013.873092.

50. Yokoyama, S. The Asian Biomass Handbook. A guide for biomass production & utilization, The Japan Institute of Energy, Tokyo, 2008.

51. Bonechi, C., Consumi, M., Donati, A., Leone, G., Magnani, A., Tamasi, G., Rossi, C. Biomass: An overview, in: Dalena, F., Basile, A., Rossi, C. (eds.), Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen. Elsevier Publishing, London, 2017. 3-42.

52. Chen, H. Chemical composition and structure of natural lignocellulose, in: Chen, H. (Ed.), Biotechnology of Lignocellulose. Springer, Dordrecht, 2014. 25-71.

53. Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawsk, L., Thai, P. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017. 579; 1000-1034.

54. Bala, J.D., Lalung, J., Al-Gheethi, A.A.S., Norli, I.A Review on Biofuel and Bioresources for Environmental Applications, in: Ahmad, M., Ismail, M., Riffat, S. (eds.),

55. Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer, Cham, 2016. 205-225.

56. Carpenter, D., Westover, T.L., Czernik, S., Jablonski, W., 2014. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 2014. 16(2); 384-406.

57. Fromm, J., Rockel, B., Lautner, S., Windeisen, E., Wanner, G. Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J. Struct. Biol. 2003. 143(1); 77-84.

58. Xu, F., Zhong, X.C., Sun, R.C., Jones, G.L.L. Lignin distribution and ultrastructure of Salix psammophila. Trans Chin. Pul Pap. 2005. 20(1); 6-9.

59. Chen, X., Khanna, M., Yeh, S., 2012. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies. Environ. Res. Lett. 2012. 7(4); 045907.

60. Hodásová, L., Jablonský, M., Škulcová, A., Ház, A. Lignin, potential products and their market value. Wood Res. 2015. 60(6); 973-986.

61. Wells, T., Ragauskas, A.J. On the future of lignin-derived materials, chemicals and energy. Innov. Ener. Res. 2016. 5(2); 117.

62. Xie, S., Ragauskas, A.J., Yaun, J. Lignin conversion: opportunities and challenges for the integrated biorefinery. Ind. Biotechnol. 2016. 12(3); 161-167.

63. Rana, R., Nanda, S., Meda, V., Dalai, A.K., Kozinski, J.A. A review of lignin chemistry and its biorefining conversion technologies. J. Biochem. Eng. Bioprocess. Technol. 2018. 1(2).

64. Wang, H., Tucker, M., Ji, Y. Recent development in chemical depolymerization of lignin: a review. J. Appl. Chem. 2013. Article ID 838645.

65. Welker, C.M., Balasubramanian, V.K., Petti, C., Rai, K.M., DeBolt, S., Mendu, V. Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies. 2015. 8(8); 7654-7676.

66. Laurichesse, L., Avérous, S. Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 2014. 39(7); 1266-1290.

67. Abejón, R., Pérez-Acebo, H., Clavijo, L. Alternatives for chemical and biochemical lignin valorization: hot topics from a bibliometric analysis of the research published during the 2000-2016 period. Processes. 2018. 6(8); 98.

68. Vorwerg, W., Radosta, S., Leibnitz, E. Study of a preparative-scale process for the production of amylose. Carbohydr. Polym. 2002. 47(2); 181-189.

69. Edwards, S., Chaplin, M.F., Blackwood, A.D., Dettmar, P.W. Primary structure of rabinoxylans of ispaghula husk and wheat bran. Proc. Nutr. Soc. 2003. 62(1); 217-222.

70. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., An overview of the chemical composition of biomass. Fuel. 2010. 89(5); 913-933.

71. Vassilev, S.D., Andersen, L., Vassileva, C., Morgan, T. An overview of the organic and inorganic phase composition of biomass. Fuel. 2012. 94; 1-33.

72. Vassilev, S.V., Vassileva C.G. Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel. 2016. 181; 1-33.

73. Demirbas, A., Use of algae as biofuel sources. Energy Convers. Manage. 2010. 51(12); 2738-2749.

74. Tamaki, Y., Mazza, G. Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: effects of extractives, particle size and crop species. Ind. Crops Prod. 2010. 31(3); 534-541.

75. Huber, G.W., Iborra, S., Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 2006. 106(9); 4044-4098.

76. Mesa, L., González, E., Ruiz, E., Romero, I., Cara, C., Felissia, F., Castro, E. Preliminary evaluation of organosolv pretreatment of sugar cane bagasse for glucose production: application of 23 experimental design. Appl. Energy. 2010. 87(1); 109-114.

77. Alaswada, A., Dassisti, M., Prescotta, T., Olabia, A.G.Technologies and developments of third generation biofuel production. Renew. Sust. Energy Rev. 2015. 51; 1446-1460.

78. Werkelin, J., Skrifvars, B.J., Hupa, M. Ash-forming elements in four Scandinavian wood species. Part 1: summer harvest. Biomass Bioenergy. 2005. 29(6); 451-466.

79. Di Blasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 2008. 34(1); 47-90.

80. Robert C. B. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, First Edition. John Wiley & Sons. 2011.

81. Rahimpour, M.R., Arab Aboosadi, Z., Jahanmiri, A.H. Synthesis gas production in a novel hydrogen and oxygen perm-selective membranes tri-reformer for methanol production. J. Nat. Gas Sci. Eng. 2012. 9; 149-159.

82. Mariod, A.A., Extraction, Purification, and Modification of Natural Polymers, in: Olatunji, O. (ed.), Natural Polymers. Springer, Cham, 2016. 63-91.

83. Roos, C.J. Clean Heat and Power Using Biomass Gasification for Industrial and Agricultural Projects, U.S. Department of Energy. 2010.

84. Shen, D.K., Xiao, R., Gu, S., Luo, K.H.The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Adv. 2011. 1(9); 1641-1660.

85. Zhang, J., Weng, X., Han, Y., Li, W., Gan, Z., Gu, J. Effect of supercritical water on the stability and activity of alkaline carbonate catalysts in coal gasification. J. Energy Chem. 2013. 22(3); 459-467.

86. López Barreiro, D., Prins, W., Ronsse, F., Brilman, W. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass and Bioenergy. 2013. 53; 113-127.

87. Gollakota, A.R.K., Kishore, N., Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sust. Energy Rev. 2018. 81; 1378-1392.

88. Mahalaxmi, S., Williford, C. Biochemical conversion of biomass to fuels, in: Chen, W., Suzuki, T., Lackner, M. (eds.), Handbook of climate change mitigation and adaptation. Springer, New York, 2014. 1-28.

89. Brethauer, S., Studer, M.H. Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals-a review. Chimia. 2015. 69(10); 572-581.

90. Zamani, A. Introduction to lignocellulose-based products, in: Karimi, K. (ed.), Lignocellulose-Based Bioproducts. Springer, Cham, 2015. 1-36.

91. Sharma, V.K. Technology development and innovation for production of next-ge neration biofuel from lignocellulosic wastes, in: Sharma, A., Kar, S. (eds.), Energy sustainability through green energy. Green Energy Technology. Springer, New Delhi, 2015. 315-350.

92. Sreekrishnan, T.R., Kohli, S., Rana, V. Enhancement of biogas production from solid substrates using different techniquesa review. Bioresour. Technol. 2004. 95(1); 1-10.

93. Horan, N.J. Introduction, in: Horan, N., Yaser, A., Wid, N. (eds.), Anaerobic Digestion Processes. Green Energy and Technology. Springer, Singapore. 2018. 1-7.

94. Strezov, V., Properties of biomass fuels, in: Strezov, V., Evans, T.J. (eds.), Biomass processing technologies. CRC Press, Boca Raton. 2014. 1-32.

95. Taherzadeh, M.J., Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 2008. 9(9); 1621-1651.

96. Leung, D.Y.C., Wu, X., Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy. 2010. 87(4); 1083-1095.

97. https://ourworldindata.org/grapher/biofuel-production?tab=chart&country=MEX~DEU~BRA~USA~GBR~IND~CHN (accesed 05-04-2021)

98. Canakci, M., Van Gerpen, J.H. Biodiesel production via acid catalysis. Transactions of the ASAE. 1999. 42(5); 1203-1210.

99. Perea-Moreno, M., Samerón-Manzano, E. and Perea-Moreno, A. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability. 2019. 11; 863-882.

100. Hosseini SE, Wahid MA, Abuelnuor AAA. Biogas flameless combustion: a review. Appl Mech Mater 2013. 388; 273–9.

101. Wünning JA, Wünning JG. Flameless oxidation to reduce thermal noformation. Prog Energy Combust Sci 1997. 23; 81–94.

102. Katsuki M, Hasegawa T. The science and technology of combustion in highly preheated air. Symp Combust 1998. 27; 3135-46.

103. Cavaliere A, de Joannon M. Mild Combustion. Prog Energy Combust Sci 2004. 30; 329-66.

104. AK G, S B,T H. Effect of air preheat temperature and oxygen concentration on flame structure and emission. J Energy Resour Technol ASME 1999. 121; 209-16.

105. Tsuji H. High Temperature Air Combustion: From Energy Conservation to Pollution Reduction, USA: CRC: Boca Raton Florida; 2003.4.

106. Hosseini SE, Wahid Ma, Salehirad S. Environmental protection and fuel consumption reduction by flameless combustion technology: a review. Appl Mech Mater 2013.388;292-7.

107. Hosseini SE, Wahid MA. Biogas utilization: experimental investigation on biogas flameless combustion in lab-scale furnace. Energy Convers Manag 2013.74; 426-32.

108. Deraedt W, Ceulemans R. Clonal variability in biomass production and conversion efficiency of poplar during the establishment year of a short rotation coppice plantation. Biomass Bioenergy 1998.15;391.

109. Míguez JL, Morán JC, Granada E, Porteiro J. Review of technology in small-scale biomass combustion systems in the European market. Renew Sustain Energy Rev 2012.16;3867-75.

110. Nussbaumer T. Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 2003;17:1510-21.

111. Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 2004.30; 219-30.

112. Hosseini SE, Salehirad S, Wahid MA, Sies MM, Saat A. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion. Proceesings of the 4th international meeting on advances in Thermofluids (IMAT 2011), vol. 1440. AIP Publishing; 2012. 1309-12.

113. Suda T, Takafuji M, Hirata T, Yoshino M, Sato J. A study of combustion behavior of pulverized coal in high-temperature air. Proc Combust Inst 2002.29; 503-9.

114. Weber R, Smart J. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc Combust Inst 2005. 30; 2623-9.

115. Ramona D. Wood pellets combustion with rich and diluted air in HTAC furnace; 2006.

116. Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 2004.72; 243-8.

117. Demirbaş A. Biomass and wastes: upgrading alternative fuels. Energy Sources 2003.25;317–29.

118. Zhang H, Yue G, Lu J, Jia Z, Mao J. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers. Proceedings of the Combustion Institute 2007.31; 2779–85.

119. Dr. Kumaravel S. and Dr. Ashok S., Dr. Balamurugan P. Techno-Economic Feasibility Study of Biomass Based Hybrid Renewable Energy System for Microgrid Application, Conference: 2012 International Conference on Green Technologies (ICGT) 2012 IEEE. 2012.

120. Lasseter, R.H., “Microgrid. A conceptual solution”, IEEE Annual Power Electronics Specialists Conference, Madison, WI, USA. 2004. 6; 4285-4290.

121. Nayar, C.V., Lawrance, W.B., Phillips, S.J. Solar/wind/diesel hybrid energy systems for remote areas, Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, 1989. 4; 2029-2034.

122. S.S. Choi, R. Larkin., “Performance of an autonomous dieselwind turbine power system”, Electric Power Systems Research, 1995.33; 87-99.

123. J. G. McGowan, J. F. Manweli, and C. Avelar, C. L. Warner. Hybrid wind/PV/diesel hybrid power systems modeling and south American applications”, WREC, 1996. 836-847.

124. P. S. Dokopoulos A. C. Saramourtsis A. G. Bakirtzis, Prediction and evaluation of the performance of wind-diesel energy systems. IEEE Transactions on Energy Conversion. 1996. 11-2; 385-393.

125. Wichert, B. PV/diesel hybrid energy systems for remote area power generations-a review of current practices and future developments. Renewable and Sustainable Energy Reviews. 1997. 1-3; 209-228.

126. M.A. Elhadidy, S.M. Shaahid. Decentralized/stand-alone hybrid wind–diesel power systems to meet residential loads of hot coastal regions. Energy Conversion and Management. 2005. 46; 2501–2513.

127. D. Saheb-Koussa, M. Haddadi, M. Belhame. Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria. Applied Energy. 2009. 86; 1024–1030.

128. Rachid Belfkira, Lu Zhang, Georges Barakat. Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy. 2011. 85; 100–110.

129. R. W. Wies, R. A. Johnson, A. N. Agrawal, T. J. Chubb. Economic analysis and environmental impacts of a PV with diesel-battery system for remote villages. IEEE Power. Engineering Society General Meeting. 2004. 2; 1898 -1905.

130. Pedro Rosa, Wellington Lemos, Alexandre Pereira, Renato Barros and Everaldo Feitosa. Problems of planning hybrid wind-diesel power systems. IEEE Transmission & Distribution Conference, Latin America. 2004. 617-622.

131. M.A. Elhadidy. Performance evaluation of hybrid (wind/solar/diesel) power systems. Renewable Energy. 2002. 26; 401–413.

132. Richard W. Wies, Ron A. Johnson, Ashish N. Agrawal, and Tyler J. Chubb., “Simulink model for economic analysis and environmental impacts of a PV with diesel-battery system for remote villages, IEEE Transactions on power systems. 2005. 20(2); 692.

133. Raquel S. Garciaa, Daniel Weisser. A wind–diesel system with hydrogen storage. Joint optimization of design and dispatch. Renewable Energy. 2006. 31; 2296–2320.

134. Shaahid, S.M. and Elhadidy, M.A. Technical and economic assessment of grid-independent hybrid photovoltaic/diesel/battery power systems for commercial loads in desert environments. Renewable and Sustainable Energy Reviews, 2007. 11-8; 1794-1810.

135. J.K. Kaldellis, K.A. Kavadias. Cost–benefit analysis of remote hybrid wind–diesel power stations. Case study Aegean sea islands, Energy Policy. 2007, 35; 1525-1538.

136. S. Rehmana, I.M. El-Amin, F. Ahmad, S.M. Shaahid, A.M. AlShehri, J.M. Bakhashwain, A. Shash. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renewable and Sustainable Energy Reviews. 2007. 11; 635–653.

137. E.M. Nfaha, J.M. Ngundam, R. Tchinda. Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon. Renewable Energy. 2007. 32; 832-844.

138. Shafiqur Rehman, Md. Mahbub Alam, J.P. Meyer, Luai M. AlHadhrami. Feasibility study of a wind-PV-diesel hybrid power system for a village. Renewable Energy. 2012. 38; 258-268.

139. Huang, G., Umaz, R., Karra U., Li, B. and Wang, L. A. Biomass-based Marine Sediment Energy Harvesting System, Symposium on Low Power Electronics and Design, 2013 IEEE.

140. Huang, G., Umaz, R., Karra, U., Li, B. and Wang, L.. A Biomass-based Marine Sediment Energy Harvesting System, Symposium on Low Power Electronics and Design IEEE. 2013. 359-364.

141. Yong-Ping Gao a, Zi-Bo Zhai b, Ke-Jing Huang b, Ying-Ying Zhang. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors, New Journal of Chemistry, 2017. 41; 11456-11470.

142. Arimi, M.M.M, Mecca, C. A., Kiprop, A. K., Ramkat, R. Recent trends in applications of advanced oxidation processes (AOP) in bioenergy production: Review, Renewable and sustainable energy reviews, 2020, 121; 109669.

143. Ekholm T, Krey V, Pachauri S, Riahi K. Determinants of household energy consumption in India. Energy Policy 2010. 38; 5696-707.

144. Balachandra P. Modern energy access to all in rural India: an integrated implementation strategy. Energy Policy 2011.39; 7803-14.

145. Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 2007. 50 (2007);1–39.

146. Murali S, Shrivastava R, Saxena M. Quantification of agricultural residues for energy generation—a casestudy. J Inst Public Health Eng 2008. 2007–08(3):27.

147. MNRE. Biomass power and cogeneration programme of the Ministry of New and Renewable Energy. Government of India 2013.

148. Davis SC, Hay W, Pierce J. Biomass in the energy industry: an introduction. London, United Kingdom: BP p.l.c.; 2014.

149. NPC. A report on improvement of agricultural residues and agro-by-products utilization. Lodhi Road, New Delhi, India: National Productivity Council. 1987.

150. MNES. In: Ministry of non-conventional energy sources. Government of India, B-14, CGO complex, Lodhi Road, New Delhi, India. 1996.

151. Reprint Series No. 1/99-PC (http://planningcommission.nic.in/reports/wrkpapers/wp_lease.pdf).

152. Singh Y. Waste biomass to energy, environment and waste management, (www.wealthywaste.com/wastebiomass-to-energy) 1 October, 2008.

153. Kapoor RP, Agarwal A. The price of forests. New Delhi: Centre for Science and Environment; 1992. 173.

154. Planning Commission of India, Working paper on ‘Leasing of degraded forest land, report.

155. Ravindranath NH, Somashekar HI, Nagaraja MS, Sudha P, Sangeetha G, Bhattacharya SC, et al. Assessment of non-plantation biomass resources potential for energy in India. Biomass Bioenergy 2005. 29; 178–90.

156. Reddy AKN. The blessing of the commons. Energy Sustainable Dev 1995;II (1):48–50.

157. Singh Y. Waste biomass to energy, environment and waste management 〈www.wealthywaste.com/wastebiomass-to-energy〉; 1 October, 2008.

158. Zafar S. Biomass wastes, alternative energy eMagazine—AltEnergyMag.com; August/September, 2009.

159. Hobson PN, Bousefield R, Summers R. Methane production from agricultural and domestic wastes. London: Applied Science Publishers Ltd.; 1981. p. 121.

160. Zafar S. Waste to energy conversion—a global perspective. EARTHTOYS the renewable energy emagazine 2008.

161. Varshney R, Bhagoria JL, Mehta CR. Small scale biomass gasification technology in India—an overview. J Eng, Sci Manage 2010. 3; 33-40.

162. Technology Informatics Design Endeavour (TIDE). Bioreactor for treatment of organic fraction of urban municipal waste at Siraguppa. Bangalore: Technology Informatics Design Endeavour; 2005 (In: TIDE technical report).

163. Jagadish KS, Chanakya HN. Final report on project biogas production from leaf biomass. Bangalore: Indian Institute of Science; 1999 (In: ASTRA technical report).

164. Hiremath RB, Kumar B, Balachandra P, Ravindranath NH, Raghunandan BN. Decentralized renewable energy: scope, relevance and applications in the Indian context. Energy Sustainable Dev 2008. 13:4.

165. Reddy AKN, Krishnaswamy KN. Innovation chain under the impact of technology imports. Lecture 3(a), R&D Management Course of Department of Management Studies. Bangalore: Indian Institute of Science; 1988.

166. Chanakya HN, Reddy BVV, Modak J. Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters—a case study from India. Renewable Energy 2009. 34; 416–20.

167. Konstantinos Vatopoulos, et al. JRC scientific and policy report. Eur Union 2012.

168. MNRE annual report 2012–13 . New Delhi: Ministry of New and Renewable Energy; 2012-13.

169. Energy statistics report, Govt. of India; March, 2014.

170. Appel HR, Fu YC, Friedman S, Yavorsky PM, Wender I. Converting organic wastes to oil. US Bureau of Mines report of investigation no. 7560; 1971.

171. Mohan D, Pittman Jr CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 2006. 20; 848-89.

172. Demirbas A. Producing bio-oil from olive cake by fast pyrolysis. Energy Sources Part A 2008. 30; 38-44.

173. Grover PD. Biomass: thermochemical characterization for gasification. IIT Delhi; 1989.

174. Katyal S. Effect of carbonization temperature on combustion reactivity of bagasse char. Energy Sources Part A 2007. 29;1477-85.

175. Sharma A, Unni BG, Singh HD. A novel fed batch system for bio methanation of plant biomasses. J Biosci Bioeng 1999. 87(5); 678-82.

176. Ganesh A, Banerjee R. Biomass pyrolysis for power generation—a potential technology. Renewable Energy 2001. 22; 9-14.

177. Mohan D, Pittman Jr CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 2006. 20; 848-89.

178. Das CR, Ghatnekar P. Replacement of cowdung by fermentation of aquatic and terrestrial plants for use as fuel, fertilizer and biogas plant feed. In: TERI technical report. TERI; December, 1979.

179. McKendry P. Energy production from biomass (Part 1): Overview of biomass. Bioresour Technol 2002. 83(1); 37 46.

180. Souza, Samuel Nelson M, Werncke Ivan, Marques Cleber Aimoni, Bariccatti Reinaldo A, Santos Reginaldo F, et al. Electric energy micro-production in a rural property using biogas as primary source. Renewable Sustainable Energy Rev 2013. 28; 385-91.

181. McKendry P. Energy production from biomass (Part 2): overview of biomass. Bioresour Technol 2001. 83 2002(1); 47 54.

182. Ravindranath NH, Balachandra. R. Sustainable bioenergy for India: technical, economic and policy analysis. Energy 2009.34 (8); 1003–13.

183. Bhat PR, Chanakya HN, Ravindranath NH. Biogas plant dissemination: success story of Sirsi, India. Energy Sustainable Dev 2001. 39-41 (March (1).

184. MNRE. Biomass power and cogeneration programme of the Ministry of New and Renewable Energy. Government of India 2013.

185. Global status report REN 21, (http://www.cenrec.com.au/wpcontent/uploads/2014/03/GSR2013_lowres.pdf).

186. Sudha P. Plantation forestry; land availability and bio-mass production potential in Asia. Report submitted to ARPEEC, Sida, Energy Program, AIT, Bangkok; 1996.

187. Annual report of Pabiomass energy association; January, 2013.

188. Annual Energy Outlook 2014. Published December 16, 2013 with the final release of the full AEO 2014 presently slated for April 30, 2014, (http://www.nirs.org/alternatives/sundayforecast414.pdf); 2014.

189. Annual Akshay Urja report MNRE, (http://mnre.gov.in/mission-and-vision-2/publications/akshay-urja/)

*Corresponding author: prabhansu.nitp@gmail.com

Renewable Energy for Sustainable Growth Assessment

Подняться наверх