Читать книгу Geophysical Monitoring for Geologic Carbon Storage - Группа авторов - Страница 2

Table of Contents

Оглавление

Cover

Series Page

Title Page

Copyright Page

LIST OF CONTRIBUTORS

PREFACE

1 Evaluating Different Geophysical Monitoring Techniques for Geological Carbon Storage 1.1. INTRODUCTION 1.2. GEODETIC AND SURFACE MONITORING 1.3. SUBSURFACE SEISMIC MONITORING 1.4. SUBSURFACE NONSEISMIC MONITORING 1.5. CASE STUDIES OF GEOPHYSICAL MONITORING ACKNOWLEDGMENTS

Part I: Geodetic and Surface Monitoring 2 Geodetic Monitoring of the Geological Storage ofGreenhouse Gas Emissions 2.1. INTRODUCTION 2.2. OBSERVATIONAL METHODS 2.3. DATA INTERPRETATION AND INVERSION METHODS 2.4. FIELD APPLICATIONS 2.5. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 3 Surface Monitoring, Verification, and Accounting (MVA) for Geologic Sequestration Storage 3.1. INTRODUCTION 3.2. CURRENT STATE OF THE ART 3.3. FREQUENCY MODULATED SPECTROSCOPY 3.4. FMS PHYSICS AND MODELING 3.5. RESULTS 3.6. CONCLUSION ACKNOWLEDGMENTS REFERENCES

Part II: Subsurface Seismic Monitoring 4 Optimal Design of Microseismic Monitoring Network for Cost‐Effective Monitoring of Geologic Carbon Storage 4.1. INTRODUCTION 4.2. METHOD 4.3. OPTIMAL DESIGN OF A SURFACE SEISMIC ARRAY 4.4. OPTIMAL DESIGN OF A BOREHOLE GEOPHONE ARRAY 4.5. DISCUSSION 4.6 CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 5 Seismic Response of Fractured Sandstone During Geological Sequestration of CO2 5.1. INTRODUCTION 5.2. EXPERIMENTAL SETUP 5.3. EXPERIMENTAL RESULTS 5.4. DISCUSSION 5.5. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 6 Dynamic Moduli and Attenuation 6.1. INTRODUCTION 6.2. DATA COLLECTION AND METHODOLOGY 6.3. LABORATORY CORE MEASUREMENTS 6.4. INTERPRETATION OF RESULTS 6.5. CONCLUSIONS ACKNOWLEDGMENTS APPENDIX REFERENCES 7 Elastic‐Wave Sensitivity Propagation for Optimal Time‐LapseSeismic Survey Design 7.1. INTRODUCTION 7.2. METHODOLOGY 7.3. NUMERICAL RESULTS 7.4. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 8 Time‐Lapse Offset VSP Monitoring at the Aneth CO2 ‐EOR Field 8.1. INTRODUCTION 8.2. TIME‐LAPSE OFFSET VSP SURVEYS 8.3 RELOCATION OF OFFSET VSP SOURCES 8.4. BALANCING TIME‐LAPSE VSP DATA 8.5. DEPTH MIGRATION OF TIME‐LAPSE OFFSET VSP DATA 8.6. TIME‐LAPSE RESERVOIR CHANGE 8.7. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 9 Reverse Time Migration of Time‐Lapse Walkaway VSP Data for Monitoring CO2 Injection at the SACROC CO2 ‐EOR Field 9.1. INTRODUCTION 9.2. WALKAWAY VSP DATA RECORDED AT SACROC FIELD 9.3. STATICS CORRECTION AND AMPLITUDE BALANCING 9.4. RTM IMAGING 9.5. DISCUSSION 9.6. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 10 Least‐Squares Reverse‐Time Migration for Reservoir Imaging at the Cranfield CO2 ‐EOR Field 10.1. INTRODUCTION 10.2. LEAST‐SQUARES REVERSE‐TIME MIGRATION 10.3. LEAST‐SQUARES REVERSE‐TIME MIGRATION OF VSP DATA 10.4. DISCUSSION 10.5. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 11 Quantifying Changes of Subsurface Geophysical Properties Using Double‐Difference Seismic‐Waveform Inversion 11.1. INTRODUCTION 11.2. METHODOLOGY 11.3. DOUBLE‐DIFFERENCE WAVEFORM INVERSION WITH A PRIORI INFORMATION 11.4. DOUBLE‐DIFFERENCE WAVEFORM INVERSION WITH THE MODIFIED TOTAL‐VARIATION REGULARIZATION 11.5. RESULTS 11.6. CONCLUSION ACKNOWLEDGMENTS REFERENCES 12 Multicomponent Seismic Data and Joint Inversion 12.1. INTRODUCTION 12.2. BACKGROUND: USES AND LIMITATIONS OF MULTICOMPONENT SEISMIC DATA 12.3. INFORMATION CONTENT OF MULTICOMPONENT DATA 12.4. DIRECT DETECTION OF FRACTURING WITH SEISMIC DATA 12.5. JOINT INVERSION OF MULTICOMPONENT SEISMIC DATA FOR SUBSURFACE CHARACTERIZATION 12.6. KEVIN DOME CASE STUDY OF QUADRI‐JOINT INVERSION 12.7. APPLICATION OF JOINT INVERSION TO CHARACTERIZATION OF THE DUPEROW CO2‐BEARING ZONE AT KEVIN DOME 12.8. DISCUSSION ACKNOWLEDGMENTS REFERENCES 13 Tracking Subsurface Supercritical CO2 Using Advanced Reflection Seismic and Well Log‐Based Workflows Incorporating Fluid Density and Pore Pressure Effects 13.1. INTRODUCTION 13.2. PETROPHYSICAL MODEL 13.3. METHODS 13.4. RESULTS 13.5. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES

10  Part III: Subsurface Nonseismic Monitoring 14 Monitoring Carbon Storage Sites With Time‐Lapse Gravity Surveys 14.1. INTRODUCTION 14.2. GRAVITY ANOMALIES INDUCED BY CO2 INJECTION 14.3. GRAVITY MEASUREMENTS 14.4. MODELING GRAVITY ANOMALY ASSOCIATED WITH A CO2 PLUME 14.5. DEPLOYMENT OF GRAVITY SURVEYS: COST AND DESIGN 14.6. TIME‐LAPSE GRAVITY MONITORING ON CCS SITES: REAL CASE STUDIES 14.7. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 15 Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring 15.1. INTRODUCTION 15.2. PHYSICAL PROPERTIES OF CARBON DIOXIDE (CO2) 15.3. ROCK PROPERTIES AND RESISTIVITY 15.4. BASIC PRINCIPLES OF ELECTRICAL AND ELECTROMAGNETIC TECHNIQUES 15.5. MODELS FOR SIMPLE RESISTIVE BODIES 15.6. ADVANTAGES AND LIMITATIONS OF ELECTRICAL AND EM TECHNIQUES IN DETECTING RESISTORS 15.7. MONITORING OF SHALLOW CO2 LEAKS ACKNOWLEDGMENTS REFERENCES 16 Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography 16.1. INTRODUCTION 16.2. ELECTRICAL PROPERTIES OF EARTH MATERIALS 16.3. PRINCIPLES OF ELECTRICAL RESISTIVITY TOMOGRAPHY 16.4. MONITORING SYSTEM DESIGN AND DEPLOYMENT 16.5. DATA PROCESSING 16.6. CASE STUDIES 16.7. FUTURE STUDIES ACKNOWLEDGMENTS REFERENCES 17 Monitoring of Large‐Scale CO2 Injection Using CSEM, Gravimetric, and Seismic AVO Data 17.1. INTRODUCTION 17.2 FORWARD MODELS 17.3. INVERSE PROBLEM 17.4 NUMERICAL EXPERIMENTS 17.5 CONCLUSIONS APPENDIX APPENDIX A REDUCED, SMOOTHED LEVEL‐SET REPRESENTATION APPENDIX B INITIAL ENSEMBLE GENERATION APPENDIX C SAMPLE MEAN AND COVARIANCE MATRIX REFERENCES 18 Self‐Potential Monitoring for Geologic Carbon Dioxide Storage 18.1. INTRODUCTION 18.2. MECHANISMS OF SP GENERATION 18.3. ILLUSTRATIVE CALCULATIONS OF SP POSTPROCESSOR 18.4. FIELD OBSERVATIONS 18.5. CONCLUDING REMARKS ACKNOWLEDGMENTS REFERENCES

11  Part IV: Case Studies of Geophysical Monitoring 19 Microseismic Monitoring, Event Location, and Focal Mechanisms at the Illinois Basin–Decatur Project, Decatur, Illinois, USA 19.1. INTRODUCTION 19.2. GEOLOGIC SETTING AND SEISMIC HISTORY 19.3. MONITORING 19.4. SUBSURFACE ARRAY CALIBRATION 19.5. EVENT CHARACTERIZATION 19.6. MODEL INTEGRATION 19.7. DISCUSSION AND SUMMARY ACKNOWLEDGMENTS REFERENCES 20 Associated Storage With Enhanced Oil Recovery 20.1. INTRODUCTION 20.2. METHODS 20.3. SITE CHARACTERIZATION 20.4. MVA 20.5. SIMULATION AND MODELING 20.6. RISK ASSESSMENT 20.7. CO2 ACCOUNTING AND IMPACT TO OIL RECOVERY 20.8. CONCLUSIONS ACKNOWLEDGMENTS DISCLAIMER REFERENCES 21 Testing Geophysical Methods for Assessing CO2 Migration at the SECARB Early Test, Cranfield, Mississippi, USA 21.1. INTRODUCTION 21.2. METHODS 21.3. RESULTS 21.4. DISCUSSION 21.5. CONCLUSIONS REFERENCES 22 Toward Quantitative CO2 Monitoring at Sleipner, Norway 22.1. INTRODUCTION 22.2. GEOLOGICAL BACKGROUND AND MODELS 22.3. METHODOLOGY 22.4. SLEIPNER CASE STUDY 22.5. DISCUSSION 22.6. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 23 Geophysical Monitoring of CO2 Injection at Ketzin, Germany 23.1. INTRODUCTION 23.2. KETZIN SITE GEOLOGY AND CHARACTERIZATION 23.3. CO2 INJECTION OPERATION 23.4. PETROPHYSICAL MEASUREMENTS 23.5. GEOPHYSICAL MONITORING 23.6. DISCUSSION AND RECOMMENDATIONS 23.7. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 24 Geophysical Monitoring Techniques 24.1. SUMMARY OF ADVANTAGES AND LIMITATIONS 24.2. FUTURE RESEARCH DIRECTIONS ACKNOWLEDGMENTS

12  Index

13  End User License Agreement

Geophysical Monitoring for Geologic Carbon Storage

Подняться наверх