Читать книгу Fundamentos teóricos de la música atonal - Hebert Vázquez - Страница 29
EJEMPLO 12
ОглавлениеGENERACIÓN DE LA C.I. A PARTIR DEL PRINCIPIO DEL “INTERVALO MÁS PEQUEÑO”
En el ejemplo 12 a) se ilustra el proceso para la obtención de la clase de intervalo entre las c.a. simultáneas 2 y 7 que aparecen en el primer compás. En los compases 2 y 3 se muestran los dos ordenamientos posibles que pueden tener dichas c.a., así como los intervalos ordenados que generan. Podemos apreciar que mín{i.<7, 2>, i.<2, 7>} = 5, ya que 5 < 7, por lo que 5 es la c.i. que mapea entre sí a las c.a. del compás 1, como se señala en el compás 4 del mismo ejemplo 12 a). Los intervalos ordenados i.<7, 2> = 7; i.<2, 7> = 5 (representados ambos por la c.i. 5) correspondientes a los compases 2 y 3, respectivamente, se encuentran también expresados de manera gráfica en el universo circular del espacio-c.a., debajo del pentagrama.
En el ejemplo 12 b) se lleva a cabo el mismo procedimiento con las c.a. 3 y 4. Se puede apreciar que la suma de cada par de intervalos pertenecientes a una misma c.i. siempre da como resultado 0 (mód. 12). En el caso del ejemplo 12 a), tenemos que 7 + 5 = 0 (mód. 12), mientras que en 12 b), 1 + B = 0 (mód. 12). Gráficamente, esto se traduce siempre en dos recorridos complementarios cuya unión es exactamente igual al recorrido total de la circunferencia del espacio-c.a. (véanse las gráficas de los ejemplos 12 a) y 12 b). La única c.i. cuyos dos intervalos expresan recorridos equidistantes en la circunferencia del espacio-c.a. es la c.i. 6, ya que 6 + 6 = 0 (mód. 12). Este caso se ilustra en el ejemplo 12 c).
En el ejemplo 13 se muestran las seis diferentes clases de intervalos que genera el espacio-c.a., acompañadas de los intervalos (ordenados) individuales que las conforman.