Читать книгу Mathematik für Ingenieure II für Dummies - J. Michael Fried - Страница 17

Teil II: Integralrechnung und Vektoranalysis

Оглавление

Der zweite Teil beschäftigt sich mit dem zweiten großen Teilgebiet der Analysis: der Integralrechnung. In der mehrdimensionalen Analysis ist die Integralrechnung wesentlich vielfältiger, als dies in der eindimensionalen Analysis der Fall ist. So können Sie eine Funktion nicht nur über -dimensionale Teilmengen eines -dimensionalen Raums integrieren, sondern auch über niedriger dimensionale Teilmengen: Sie können Raum-, Flächen- und Kurvenintegrale definieren und berechnen. Die letzten beiden Sorten von Integralen unterscheiden sich noch einmal je nach Art der Integrandenfunktion: Vektorwertige Funktionen benötigen eine andere Art der Integration als skalarwertige Funktionen.

In Kapitel 6 werden beispielhaft für allgemeine Raumintegrale solche Integrale im zwei- oder dreidimensionalen Raum behandelt. Dies entspricht einer Verallgemeinerung der Integration aus der eindimensionalen Analysis und lässt sich im Wesentlichen auf diese zurückführen.

Kapitel 7 und Kapitel 8 führen die beiden anderen Sorten von mehrdimensionalen Integralen ein: Kurvenintegrale und Flächenintegrale über Funktionen von zwei oder drei Variablen.

Kapitel 9 liefert Ihnen einen kurzen Überblick über die Zusammenhänge, die zwischen den drei Integralsorten bestehen, und zeigt Ihnen, wann und wie Sie die Integration über ein Volumen durch Integration über Flächen oder über Kurven ausdrücken können. Diese Zusammenhänge sind für physikalische und technische Themenbereiche wie die Strömungsmechanik oder die Theorie elektromagnetischer Felder wichtig.

Mathematik für Ingenieure II für Dummies

Подняться наверх