Читать книгу Mathematik für Ingenieure II für Dummies - J. Michael Fried - Страница 6
Inhaltsverzeichnis
Оглавление1 Cover
5 Einleitung Zu diesem Buch Konventionen in diesem Buch Törichte Annahmen über den Leser Wie dieses Buch aufgebaut ist Symbole in diesem Buch Wie es weitergeht
6 Teil I: Mehrdimensionale Analysis für Ingenieure Kapitel 1: Was bisher geschah Grundlagen aus der linearen Algebra Eindimensionale Analysis Kapitel 2: Grundlagen der Differentialrechnung im ℝn Unsere Welt ist mehrdimensional Ableiten bis zum Abwinken: Totale Differenzierbarkeit Und weiter so! Ableitungen höherer Ordnung Kapitel 3: Darf's noch etwas mehr sein? Mehr Differentialrechnung Die Kettenregel, eine alte Bekannte Höhere Ableitungen, Differentialoperatoren und mathematische Schreibfaulheit Der Mittelwertsatz Kapitel 4: Erste Anwendungen der mehrdimensionalen Differentialrechnung Die Taylorsche Formel Das Newton-Verfahren Von hinten durch die Brust ins Auge: Implizite Funktionen Kapitel 5: Optimierung Berggipfel und tiefste Schluchten: Extremstellen Ganz sicher: Hinreichende Optimalitätsbedingung Restringierte Optimierung
7 Teil II: Integralrechnung und Vektoranalysis Kapitel 6: Integralrechnung in zwei oder drei Dimensionen Bauklötzchen oder: Die zweidimensionale Integration Im Raum geht das auch: Dreidimensionale Integration Kapitel 7: Fäden durch den Raum: Kurvenintegrale Punkte und Kurven im dreidimensionalen Raum Orientierungslos im Raum: Kurvenintegrale über Skalarfelder Orientierte Kurvenintegrale Kapitel 8: Eine Dimension nach oben: Flächenintegrale Flächen im dreidimensionalen Raum Wie groß ist eine gebogene Fläche? Flächenintegrale mit und ohne Orientierung Kapitel 9: Die hohe Kunst der Vektoranalysis: Integralsätze Differentialoperatoren und Integralrechnung Der Gaußsche Integralsatz Die Sätze von Kelvin-Stokes und Green
8 Teil III: Gewöhnliche Differentialgleichungen Kapitel 10: Es ändert sich: Wie funktioniert's? Grundlegende Fragestellung bei Differentialgleichungen Was sind Differentialgleichungen? Langsam anfangen: Gewöhnliche Differentialgleichungen 1. Ordnung Graphische Veranschaulichungen Kapitel 11: Kochrezepte: Explizite Lösungsmethoden für spezielle gewöhnliche Differentialgleichungen Die exakte Differentialgleichung Separable Differentialgleichungen Kapitel 12: Lineare Differentialgleichungen höherer Ordnung Gewöhnliche Differentialgleichungen höherer Ordnung Funktionale Vektoren oder: Lineare Algebra im Funktionenraum Die homogene lineare Differentialgleichung n-ter Ordnung Die inhomogene lineare Differentialgleichung n-ter Ordnung Kapitel 13: Spezielle lineare Differentialgleichungen Lineare Differentialgleichungen mit konstanten Koeffizienten Lösung der inhomogenen linearen Differentialgleichung Die Eulersche Differentialgleichung Kapitel 14: Systeme linearer Differentialgleichungen Allgemeine lineare Differentialgleichungssysteme Das alte Spiel: Lösungsmethode für lineare Differentialgleichungssysteme Spezieller: Lineare Differentialgleichungssysteme mit konstanten Koeffizienten
9 Teil IV: Funktionentheorie Kapitel 15: Überhaupt nicht hohl: Holomorphe Funktionen Funktionentheorie oder komplexe Analysis Kapitel 16: Komplexe Integration Vorsichtig anfangen: eindimensionale Integration im Komplexen Viel mehr zu komplexen Kurvenintegralen! Der Integralsatz von Cauchy Böse Stellen: Die Singularitäten Kurvenintegrale um Singularitäten Kapitel 17: Potenz- und Laurentreihen Mal wieder Potenzreihen – diesmal komplex! Trost bei Singularitäten: Laurentreihen Einige besondere Eigenschaften holomorpher Funktionen
10 Teil V: Der Top-Ten-Teil Kapitel 18: Fast zehn Tipps und Tricks, um einen Mathekurs zu überstehen