Читать книгу Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie - James J. Keeler - Страница 13
Schwerere Aufgaben
ОглавлениеS1.1.1
1 (a) Der Ausdruck ρgh liefert den Druck in der Apparatur in der Einheit Pascal (Pa), wenn die verwendeten Größen in SI-Einheiten angegeben werden. Daher ist es hilfreich, die Drücke in die EinheitPa umzurechnen. Die angegebene Dichte von Quecksilber entsprichtDaraus folgt, mit 760 Torr = 1 atm = 1,013 25 × 105 Pa,
2 (b) Wir bringen die Zustandsgleichung des idealen Gases (Gl. (1.4)) in die Form R = pV/nT. Alle Größen auf der rechten Seite dieser Gleichung sind messbar:
Der Gasdruck ergibt sich aus der Kraft pro Flächeneinheit, die eine Wassersäule der Höhe 206,402 cm aufgrund ihres Gewichts auf das Gas ausübt. Das Manometer soll überall dieselbe Querschnittsfläche A haben. Die Kraft ist F = mg; dabei ist m die Masse der Wassersäule und g die Beschleunigung des freien Falls. Für die Masse der Wassersäule gilt m = ρV = ρhA mit h = 206,402 cm und der Querschnittsfläche A. Es folgt
Damit erhalten wir
Der Literaturwert ist R = 8,3145 J K−1 mol−1. Eigentlich müsste man die Gasvolumina auf den Druck p = 0 extrapolieren, um den bestmöglichen Wert von R zu erhalten. Bei den gegebenen Bedingungen verhält sich Helium jedoch bereits nahezu wie ein ideales Gas, sodass der für R ermittelte Wert recht nahe beim Literaturwert liegt.
S1.1.3 Aus der Zustandsgleichung des idealen Gases, pV = nRT, ergibt sich pVm = RT, wobei Vm das molare Volumen ist (also das Volumen für n = 1 mol). Durch Umstellen erhalten wir p = RT/Vm, so dass eine Auftragung von p gegen T/Vm eine Gerade mit der Steigung R ergeben sollte.
Reale Gase verhalten sich jedoch nur bei einem Druck von null ideal, daher müssen wir die Daten auf einen Druckwert von null extrapolieren. Eine Herangehensweise ist, die Zustandsgleichung des idealen Gases in die Form pVm/T = R zu bringen und zu erkennen, dass der Term pVm/T für ein reales Gas bei einem Druck von null gegen R geht. Daher kann aus dem Achsenabschnitt einer Auftragung von pVm/T gegen p bei p = 0 näherungsweise ein Wert für R erhalten werden. Damit die Extrapolation der Ausgleichsgeraden auf den Punkt bei p = 0 verlässlich ist, müssen die Datenpunkte hinreichend präzise auf einer geraden Linie liegen. Die Auftragung der angegebenen Werte ist in Abb. 1.2 gezeigt.
p/atm | Vm/(dm3 mol−1) | (pVm/T)/(atm dm3 mol−1 K−1) |
---|---|---|
0,750 000 | 29,8649 | 0,082 0014 |
0,500 000 | 44,809 0 | 0,082 022 7 |
0,250 000 | 89,638 4 | 0,082 0414 |
Die Datenpunkte liegen nahe einer Ausgleichsgeraden mit der Gleichung
Aus dem Achsenabschnitt erhalten wir für R den Wert 0,082 062 atm dm3 mol−1 K−1. Die Daten sind mit sechs signifikanten Stellen angegeben; die Punkte liegen jedoch nicht besonders präzise auf der Ausgleichsgeraden, so dass der Wert für R hier mit einer signifikanten Stelle weniger angegeben wurde.
S1.1.5 Für ein ideales Gas gilt pV = nRT, was sich umstellen lässt zu p = nRT/V. Die Stoffmenge in Mol ergibt sich aus n = m/M, wobei M die Molmasse und m die Masse des Gases ist. Daher gilt p = (m/M)(RT/V). Die Größe m/V entspricht der Dichte ρ, und somit gilt
Daraus folgt, dass p/ρ für ein ideales Gas für jede beliebige Temperatur konstant sein sollte. Reale Gase nähern sich für p → 0 diesem Wert an. Eine geeignete Auftragung ist p/ρ gegen p; aus dem Achsenabschnitt bei p = 0 erhalten wir in guter Näherung den Wert von RT/M. In Abb. 1.3 ist diese grafische Auftragung für die gegebenen Werte gezeigt.
p/kPa | ρ/(kg m−3) | (p/ρ)/(kPa kg−1 m3) |
---|---|---|
12,22 | 0,225 | 54,32 |
25,20 | 0,456 | 55,26 |
36,97 | 0,664 | 55,68 |
60,37 | 1,062 | 56,85 |
85,23 | 1,468 | 58,06 |
101,30 | 1,734 | 58,42 |
Die Datenpunkte liegen nahe einer Ausgleichsgeraden mit der Gleichung
Der Achsenabschnitt ist (p/ρ)lim p→0 und entspricht RT/M. Nun können wir die molare Masse berechnen:
Die Molmasse von Dimethylether ist also näherungsweise 45,94 g mol−1.
S1.1.7
1 (a) Für ein ideales Gas gilt pV = nRT (Gl. (1.4)), und daher für eine Probe bei konstantem Volumen und konstanter Temperatur p1/T1 = p2/T2. Wenn der Druck um Δp und die Temperatur um ΔT erhöht werden, folgt mit p2 = p1 + Δp und T2 = T1 + ΔTFür eine Temperaturänderung um 1,00 K ist ΔT = 1,00 K, und somit gilt am Tripelpunkt von WasserAlternativ können wir für die Druckänderung mit der Temperatur auch schreiben:
2 (b) Eine Temperatur von 100,00 °C entspricht einer Temperaturerhöhung ausgehend vom Tripelpunkt um 100,00 + 273,15 − 273,16 = 99,99 K, und somit einer Druckänderung vonDer Enddruck ist daher 6,69 + 2,44… = 9,14 kPa.
3 (c) Für ein ideales Gas ist das Verhältnis Δp/ΔT von der Temperatur unabhängig; daher führt eine Temperaturerhöhung um 1,00 K ausgehend von 100,00 °C zu einer Druckerhöhung von 24,5 Pa, wie wir in Teilaufgabe (a) bereits gezeigt haben.
S1.1.9 Die Molmasse von Schwefeldioxid ist M(SO2) = 32,06 g mol−1 + 2 × 16,00 g mol−1 = 64,06 g mol−1. Wenn wir annehmen, dass sich das Gas ideal verhält, können wir das Volumen mithilfe der Zustandsgleichung des idealen Gases (Gl. (1.4), pV = nRT) bei einem angenommenen Ausstoß von 200 t (also 200 × 103 kg) berechnen:
(Beachten Sie, dass wir für die Berechnung die in der Einheit Tonnen (t) angegebene Masse in die Einheit Gramm (g) umgerechnet haben.) Eine Wiederholung der Berechnung für einen angenommenen Ausstoß von 300 t liefert ein Volumen von 4,1 × 105 m3.
Das Volumen des freigesetzten Gases liegt also zwischen 0,27 km3 und 0,41 km3.
S1.1.11‡ Wir betrachten eine Atmosphärensäule mit der Querschnittsfläche A Der Druck p in einer beliebigen Höhe entspricht der abwärts gerichteten Kraft, die auf diese Fläche wirkt; Ursache für diese Kraft ist die gravitationsbedingte Anziehung der Gasmoleküle, die sich oberhalb der vorgegebenen Höhe befinden – vereinfachend gesagt das „Gewicht“ der Luft.
Nun nehmen wir an, dass die Höhe h um dh ansteigt. Die Kraft, die auf die Fläche A wirkt, wird dadurch verringert – denn direkt oberhalb davon liegt nun ein kleinerer Teil der Atmosphäre. Genauer gesagt verringert sich die Kraft um den Betrag, den ein gasgefüllter Zylinder mit der Querschnittsfläche A und der Höhe dh aufgrund der Gravitation ausübt. Wenn ρ die Dichte des Gases ist, ergibt sich die Masse des Gases innerhalb des Zylinders gemäß ρ × A dh; die Kraft, die durch diese Masse ausgeübt wird, entspricht ρgA dh, wobei g die Beschleunigung des freien Falls ist. Die Druckänderung dp, die sich aus einem Anstieg der Höhe um dh ergibt, entspricht dieser Kraft geteilt durch die Fläche, sodass folgt:
Das negative Vorzeichen wird benötigt, da sich der Druck mit zunehmender Höhe verringert.
Um den Zusammenhang zwischen der Dichte und dem Druck zu finden, gehen wir zunächst von der Zustandsgleichung des idealen Gases (Gl. (1.4)) aus, pV = nRT. Wenn m die Masse des Gases und M seine Molmasse ist, folgt n = m/M und somit pV = (m/M)RT. Nun ziehen wir das Volumen auf die rechte Seite der Gleichung und erhalten p = (m/MV)RT. Der Quotient m/V entspricht der Dichte ρ (rho) des Gases, also gilt p = (ρ/M)RT; dies lässt sich umstellen zu einem Ausdruck für die Dichte, ρ = Mp/RT.
Diesen Ausdruck für ρ setzen wir nun in die Beziehung dp = −ρg dh ein, und wir erhalten dp = −(Mp/RT)g dh. Division durch p führt zur Variablentrennung: (1/p) dp = −(M/RT)g dh. Die linke Seite dieser Gleichung integrieren wir nun zwischen p0 (dem Druck bei h = 0) und p (dem Druck in der Höhe h). Die rechte Seite integrieren wir zwischen h = 0 und h:
Nun bilden wir auf beiden Seiten ex, und es ergibt sich
Wir wollen hier davon ausgehen, dass sich g und T bei Variation von h praktisch nicht ändern.
1 (a) Der Druck am oberen Ende des Gefäßes unterscheidet sich folglich praktisch nicht vom Druck am unteren Ende, da h/H ≪ 1 gilt. Wir können daher die Exponentialfunktion in eine Reihe entwickeln und nach den ersten beiden Termen abbrechen: ex ≈ 1 + x und somitNun stellen wir so um, dass wir einen Ausdruck für die Verminderung des Drucks, p−p0, erhalten,Wenn wir davon ausgehen, dass p0 dem einfachen Atmosphärendruck (1 atm) entspricht und laut Aufgabenstellung H = 8 km ist, erhalten wir für die Druckdifferenz
2 (b) Den Druck in einer Höhe von h = 11 km berechnen wir mithilfe des vollständigen Ausdrucks:
S1.1.13‡ Wir betrachten ein Volumen V der Atmosphäre bei einer Temperatur T und dem Druck PGesamt. Wenn die Konzentration eines in Spuren vorkommenden Gases als X „parts per trillion“ (ppt, billionstel Teile) angegeben wird, bedeutet dies: Wenn sich das Gas in einem Volumen X × 10−12 × V bei einer Temperatur T befindet, würde es einen Druck von pGesamt ausüben. Aus der Zustandsgleichung des idealen Gases folgt n = pV/RT, daher schreiben wir im vorliegenden Fall
wobei nGas die Stoffmenge des in Spuren vorliegenden Gases ist. Wenn wir das Volumen V auf die linke Seite der Gleichung ziehen, erhalten wir für die (molare) Konzentration
Ein alternativer Ansatz ist folgender: Bei einer gegebenen Temperatur und einem gegebenen Druck ist das vom Gas eingenommene Volumen proportional zu seiner Stoffmenge (in Mol). Wenn für das Gas X ppt angegeben wird, bedeutet dies, dass der Anteil X × 10−12 des Gesamtvolumens von diesem Gas eingenommen wird; die Stoffmenge dieses Gases ist also der Bruchteil X × 10−12 der insgesamt vorliegenden Stoffmenge (in Mol),
Durch Umstellen erhalten wir den Ausdruck für den Stoffmengenanteil (Molenbruch),
Der Partialdruck des in Spuren vorliegenden Gases ist daher
und seine Konzentration ist nGas/V = pGas/RT, also gilt
1 (a) Bei 10 °C und 1,0 atm erhalten wir:
2 (b) Bei 200 K und 0,050 atm erhalten wir: