Читать книгу Цифровое просвещение – философия, стратегия, этика, Виртуальная Компьютерная Лаборатория. Искусство и наука технологического лидерства в эпоху искусственного интеллекта - Михаил Александрович Демидов, Михаил Александрович Полиевктов, Михаил Александрович Шилов - Страница 8

Глава 1. ИНТЕГРАЦИЯ ВРЕМЕН И ТЕХНОЛОГИЙ: ФИЛОСОФИЯ ОБРАЗОВАНИЯ ОТ АНТИЧНОСТИ ДО ЦИФРОВОГО ПРОСВЕЩЕНИЯ. ВИРТУАЛЬНАЯ КОМПЬЮТЕРНАЯ ЛАБОРАТОРИЯ – РЕВОЛЮЦИЯ В ИТ-ОБРАЗОВАНИИ
Активное обучение в Виртуальной Компьютерной Лаборатории: эксперимент как стратегия

Оглавление

В современном мире, где знания и технологии развиваются с невероятной скоростью, образовательные подходы также претерпевают значительные изменения. Одним из ключевых аспектов эффективного обучения становится использование эксперимента как стратегии, что помогает учащимся не только усваивать теоретические знания, но и применять их на практике, тем самым углубляя понимание и совершенствуя навыки решения реальных задач, стимулируя критическое мышление, творчество и самостоятельность.

Таким образом, можно рассматривать экспериментальное обучение как подход, который подчеркивает важность опыта в процессе обучения. Основываясь на идеях американского философа и педагога Джона Дьюи (John Dewey) [46—48], а также на теории обучения Дэвида Колба (David Kolb) [49—53], экспериментальное обучение предполагает, что знания формируются через активное взаимодействие с окружающим миром. Этот подход отличается от традиционных методов запоминания и воспроизведения информации, предлагая вместо этого учебный процесс, основанный на реальном опыте, который учащиеся могут получать в Виртуальной Компьютерной Лаборатории в рамках аудиторной и самостоятельной работы, исследовательской и проектной деятельности, а также рефлексии.

Рефлексия является необходимым элементом активного обучения в Виртуальной Компьютерной Лаборатории, в силу ориентации на осмысление и анализ учащимися собственного опыта, целеполагания, действий и их результатов. Каждый студент имеет возможность учиться на личном опыте, выявлять сильные и слабые стороны в своих подходах, а также формулировать стратегии для будущего профессионального развития.

Тем не менее эксперимент и экспериментальное обучение представляют собой разные, хотя и перекликающиеся концепции. Эксперимент – это метод научного исследования, который используется для проверки гипотез путем наблюдения за результатами, полученными в контролируемых условиях. Экспериментальное обучение, с другой стороны, является подходом к образованию, который делает акцент на важность опыта в процессе обучения. При этом в обоих случаях опыт играет ключевую роль.

В эксперименте исследователи получают новые знания через наблюдение за результатами экспериментальных манипуляций, а в экспериментальном обучении студенты учатся через свой собственный опыт, выполняя в среде Виртуальной Компьютерной Лаборатории практические задания, которые имитируют реальные ситуации и/или проблемы3. При желании учащиеся могут самостоятельно или в команде изучать возможности актуальных многокомпонентных программно-технологических решений, благодаря принципам самоорганизации и правам администратора для беспрепятственной работы в лабораторной среде.

Экспериментальное обучение требует от учащихся рефлексии над собственным опытом, где анализ полученных результатов аналогичен процессу анализа данных и выводов в научном эксперименте, т.е. в обоих случаях речь идет о критическом мышлении и оценке информации.

Мы знаем, что эксперименты часто используются для проверки теоретических предположений в практических условиях, поэтому хорошо просматривается аналогия с экспериментальным обучением, которое позволяет студентам применять теоретические знания в реальных или симулированных ситуациях, тем самым углубляя их понимание предметной области. Таким образом экспериментальное обучение стимулирует творческий подход к решению проблем и может приводить к нестандартным решениям и новым идеям. Важно то, что в ИТ-образовании новые открытия и инновации возможны не только в результате экспериментов, но и благодаря экспериментальному обучению4.

Американский психолог Дэвид Колб, исследуя механизмы обучения, предложил модель, которая формализует процесс экспериментального обучения. Эта модель, известная как цикл Колба, описывает обучение в виде процесса, состоящего из четырех взаимосвязанных этапов, которые делают обучение глубоким и многоаспектным [52—54]. Рассмотрим более подробно каждый из этих этапов:

– Конкретный опыт: на этом начальном этапе учащиеся сталкиваются с новыми ситуациями и/или переосмысливают уже имеющийся опыт. Такое погружение в реальные условия или ситуации служит основой для дальнейшего обучения и способствует активному вовлечению и стимулирует интерес к дальнейшим исследованиям. В Виртуальной Компьютерной Лаборатории это может быть деятельность, связанная с настройкой виртуальных машин, развертыванием многокомпонентных программно-технологических решений, разработкой мультиплатформенных приложений, созданием новых моделей машинного обучения.

– Рефлексивное наблюдение: на этом этапе учащиеся систематизируют свой непосредственный опыт, анализируя и размышляя над ним. Рефлексия позволяет осмыслить полученные результаты, выявить ключевые моменты, извлечь уроки, а также сформулировать вопросы и сомнения, которые могли возникнуть в процессе обучения. Рефлексивное наблюдение обеспечивает более глубокое понимание и интеграцию опыта. В рамках учебной деятельности в Виртуальной Компьютерной Лаборатории это могут быть обсуждения с преподавателями и однокурсниками, отчеты, дневники практики и выпускные квалификационные работы.

– Абстрактная концептуализация: на этом этапе учащиеся используют рефлексию и анализ, чтобы развить и сформулировать новые идеи, теории или концепции, которые помогают объяснить их опыт. Абстрактное мышление помогает учащимся выйти за рамки конкретных фактов и ситуаций, чтобы затем перейти к обобщению и формированию универсальных принципов и/или моделей. В Виртуальной Компьютерной Лаборатории это может быть разработка новых подходов к решению проблем и различные улучшения на основе предыдущего опыта.

– Активное экспериментирование: учащиеся применяют свои новые знания и идеи на практике, экспериментируя и тестируя их в Виртуальной Компьютерной Лаборатории. Этот этап дает возможность проверить эффективность методов, технологий, подходов, теорий и концепций, но главным образом лучше усвоить учебный материал через практическое применение. Активное экспериментирование закрепляет знания и способствует развитию умений и навыков, необходимых для решения реальных задач.

Модель Колба подчеркивает важность активного экспериментирования и рефлексии для получения нового опыта но основе имеющегося, а также для генерации новых идей и создания инноваций в рамках учебного процесса в Виртуальной Компьютерной Лаборатории, подготавливая почву для более специализированного и целенаправленного обучения.

Переход от достаточно общих принципов модели Колба к конкретным стратегиям обучения представляет собой естественный шаг к лучшему пониманию особенностей подготовки ИТ-профессионалов и акцентирует внимание на приоритетных аспектах учебного процесса, а также позволяет оценить необходимость внесения корректировок в работу преподавателей. Итак, давайте рассмотрим базовые стратегии, на которые, по мнению автора, помогают выстроить и/или усовершенствовать образовательные программы в области цифровых технологий:


– Стратегия стимулирования инициатив и мотивации.

Смысл: стимулирование интереса и мотивации студентов к изучению нового.

Образовательные задачи: формирование стимулов для самостоятельного изучения новых тем или технологий, например, с помощью вводных видео, мастер-классов, интерактивных туров или демонстраций последних достижений в области цифровых технологий, которые побуждают студентов к дальнейшему изучению.

– Стратегия стимулирования исследовательской и экспериментальной активности.

Смысл: вовлечение студентов в научные исследования и эксперименты.

Образовательные задачи: реализация научных проектов, где студенты могут собирать данные, проводить их анализ и делать обоснованные выводы, применяя научный подход; выдача практических заданий, требующих создания своего проекта или эксперимента, например, разработка приложения для анализа «цифровых следов» учащихся в Виртуальной Компьютерной Лаборатории или проведение исследования сетевой безопасности.

– Стратегия развития творческого потенциала.

Смысл: поощрение студентов к использованию своих творческих способностей и воображения для решения предметных задач, создания новых проектов, поиска инновационных вариантов минимизации негативного влияния проблем на деятельность компаний-партнеров образовательного учреждения.

Образовательные задачи: устранение препятствий для организованной и самостоятельной деятельности учащихся в Виртуальной Компьютерной Лаборатории; организация дистанционных практик и стажировок у компаний-партнеров в виртуальной лабораторной среде; поиск интересных проектов и компактных предметных задач, которые могут быть реализованы студентами без ущерба для учебного процесса; обеспечение учащихся необходимыми вычислительными ресурсами и современным программным обеспечением.

– Стратегия побуждения к практической деятельности.

Смысл: поддержка студентов в применении теоретических знаний на практике.

Образовательные задачи: получение учащимися практического опыта работы с современными информационными системами; организация командной или индивидуальной деятельности учащихся, связанной с настройкой виртуальных машин, развертыванием многокомпонентных программно-технологических решений, разработкой мультиплатформенных приложений, обучением нейронных сетей; участие в исследовательских и коммерческих проектах.

– Стратегия развития гибкости и адаптивности.

Смысл: развитие у студентов способностей адаптироваться к изменяющимся условиям и находить баланс между теорией и практикой.

Образовательные задачи: выполнение учащимися практических заданий, которые требуют выбора между разными методами и подходами для развития гибкости мышления и способностей к адаптации.

– Стратегия фасилитации рефлексивного обучения.

Смысл: стимулирование студентов к осмыслению, анализу и оценке результатов обучения и полученного опыта, а также планированию дальнейших шагов в своем образовательном процессе.

Образовательные задачи: формирование портфолио, которое содержит собрание работ, проектов, сертификатов и других материалов для демонстрации навыков, достижений и прогресса учащегося; апробация полученных научных и практических результатов посредством докладов на конференциях и публикации статей в рецензируемых научных журналах; умение реагировать на обратную связь; ведение дневников с размышлениями над достижениями и ошибками; анализ и планирование профессионального развития; подготовка резюме для успешного трудоустройства.


– Стратегия поощрения критического анализа и свободного обмена мнениями.

Смысл: содействие конструктивному диалогу; аргументация, интерпретация и оценка идей, концепций, теорий, событий, исследовательских работ с целью глубокого понимания их сути, выявления их сильных и слабых сторон, а также определения их значимости и влияния; развитие способностей критически оценивать аргументы и доказательства, представленные в поддержку различных точек зрения.

Образовательные задачи: организация дебатов и дискуссий по актуальным темам, например в рамках научных семинаров, где студенты могут оценивать различные точки зрения и аргументированно обосновывать свою позицию.

– Стратегия формирования аналитического мышления.

Смысл: развитие у студентов способностей к системному анализу и логическому мышлению; исследование, систематизация и оценка информации для понимания сложных идей, решения проблем и принятия обоснованных решений.

Образовательные задачи: развитие аналитических и логических навыков на основе выполнения практических заданий в области алгоритмизации, программирования и системного анализа; внедрение в учебный процесс аналитических исследований и кейсов, в которых учащиеся анализируют информацию и учатся применять программно-инструментальные средства аналитики данных.

Экспериментальное обучение, словно катализатор, ускоряет процесс превращения абстрактных знаний в практические умения и навыки, открывая двери к новым горизонтам в сфере цифровых технологий.

Подводя итоги этого раздела хочется отметить, что путь к знаниям и мастерству – это не просто маршрут, который нужно пройти, это путешествие, полное открытий, вызовов и неожиданных поворотов. Каждый шаг в этом путешествии, каждая преодоленная трудность и каждое новое открытие делают нас сильнее, мудрее и более уверенными в себе. В мире, где постоянные изменения стали новой нормой, способности экспериментировать, адаптироваться, учиться и расти являются нашим самым ценным активом.

Современные преподаватели – это проводники в мире знаний, менторы и вдохновители, в руках которых формируется будущее. Преподавательская деятельность – это не просто профессия, это призвание, полное вызовов, открытий и возможностей для самореализации. В мире, где знания постоянно эволюционируют, наши способности адаптироваться, обучаться и расти являются ключом к успеху не только для нас самих, но и для тех, кого мы обучаем.

Нельзя забывать, что каждый преподаватель обладает уникальным потенциалом влиять на жизни своих учеников, открывая перед ними двери в мир бесконечных возможностей. Не бойтесь ставить перед собой высокие цели и идти к ним, преодолевая все препятствия. Используйте каждую возможность для собственного профессионального роста, будьте открыты новым методикам и подходам, не бойтесь экспериментировать и исследовать новые горизонты образовательных подходов и технологий. Пусть каждый новый день приносит Вам новые идеи, вдохновение и уверенность в своей важной миссии.

3

Дополнительную информацию см. в гл. 1 в разделе «Синтез теории и практики: Виртуальная Компьютерная Лаборатория в проектно-деятельностном обучении» и в гл. 2 в разделе «Содействие проблемно-ориентированному обучению и обучению через вызовы».

4

Однако, ошибочно считать практику выше теории. Тем не менее практическая деятельность является критерием оценки истинности теории.

Цифровое просвещение – философия, стратегия, этика, Виртуальная Компьютерная Лаборатория. Искусство и наука технологического лидерства в эпоху искусственного интеллекта

Подняться наверх