Читать книгу Physikalische Chemie - Peter W. Atkins - Страница 102

Grundlegende Definitionen

Оглавление

Die für die Thermodynamik grundlegende physikalische Eigenschaft ist die Arbeit: Arbeit ist eine Bewegung entgegen der Wirkung einer Kraft. Bei einem Prozess wird Arbeit verrichtet, wenn er im Prinzip dazu benutzt werden könnte, ein Gewicht in der Umgebung anzuheben. Ein Beispiel wäre ein Gas, das durch Ausdehnung einen Kolben bewegt, der wiederum ein Gewicht anhebt. Auch eine chemische Reaktion, die einen Strom durch einen Widerstand fließen lässt, verrichtet Arbeit, denn dieser Strom könnte genauso gut einen Motor antreiben, der dann das Gewicht hebt.


Abb. 2.1 (a) Für ein offenes System sind Stoff- und Energieaustausch mit der Umgebung möglich. (b) Bei einem geschlossenen System kann ein Energie-, aber kein Stoffaustausch mit der Umgebung stattfinden. (c) Für ein abgeschlossenes System sind weder Stoff- noch Energieaustausch mit der Umgebung möglich.

Unter der Energie eines Systems verstehen wir seine Fähigkeit, Arbeit zu verrichten. Wenn Arbeit an einem ansonsten abgeschlossenen System verrichtet wird (etwa durch Komprimieren eines Gases oder Spannen einer Feder), wächst die Fähigkeit dieses Systems, selbst Arbeit zu verrichten; seine Energie steigt also. Wenn das System Arbeit verrichtet (der Kolben gibt nach, die Feder entspannt sich), bedeutet dies eine Reduzierung seiner Energie, da es danach weniger Arbeit verrichten kann.

Durch Experimente kann man zeigen, dass die Änderung der Energie eines Systems (seiner Fähigkeit, Arbeit zu verrichten) nicht unbedingt durch Arbeit erfolgen muss. Wenn sich die Energie eines Systems als Folge einer Temperaturdifferenz zur Umgebung ändert, sagt man: Energie wurde in Form von Wärme übertragen. Bringt man eine Heizspirale in ein Becherglas mit Wasser (unser System), steigt die Fähigkeit dieses Systems, Arbeit zu verrichten (da Wasserdampf umso stärker expandieren kann, je heißer er ist). Nicht durch alle Grenzflächen hindurch kann ein Energietransfer stattfinden, selbst dann nicht, wenn eine Temperaturdifferenz zwischen System und Umgebung vorliegt. Wände, die einen Austausch von Energie in Form von Wärme erlauben, nennt man diathermisch; solche, bei denen das nicht möglich ist, heißen adiabatisch.

Ein Prozess, der Energie in Form von Wärme freisetzt, wird als exotherm bezeichnet. Verbrennungsreaktionen beispielsweise verlaufen grundsätzlich exotherm. Prozesse, denen Wärmeenergie zugeführt werden muss, nennt man endotherm. Ein Beispiel ist die Verdampfung von Wasser. Im Sinn einer kurzen und prägnanten Ausdrucksweise wollen wir uns auf folgende Sprachregelung einigen: Ein exothermer Prozess setzt Energie „in Form von Wärme“ in die Umgebung frei, ein endothermer Prozess entnimmt der Umgebung Energie „in Form von Wärme“. Dabei dürfen wir aber nicht vergessen, dass Wärme eigentlich ein Prozess ist (nämlich eine Energieübertragung infolge eines Temperaturunterschieds) und keine physikalische Größe. Wenn in einem Behälter mit diathermischer Wand ein endothermer Prozess abläuft, so strömt Energie in Form von Wärme in das System hinein, um die Temperatur auf die der Umgebung zu halten. Ein exothermer Prozess in demselben Behälter bewirkt die Übertragung von Energie in Form von Wärme an die Umgebung. Findet ein endothermer Prozess dagegen in einem Behälter mit adiabatischen Wänden statt, sinkt die Temperatur des Systems; ein exothermer Prozess bewirkt in diesem Fall einen Temperaturanstieg im System. Diese Eigenschaften sind in Abb. 2-2 zusammengefasst.

Physikalische Chemie

Подняться наверх